
Response and Predictor Variables
The EPA mileage data contains a number of variables and
measurements for each vehicle:

miles per gallon (mpg)

car or truck?

cubic inches displacement (cylinder volume)

rhp rated horsepower

mfr manufacturer

city or highway?

vehicle weight

Linear Models – p. 1/14



Response and Predictor Variables
The EPA mileage data contains a number of variables and
measurements for each vehicle:

miles per gallon (mpg)

car or truck?

cubic inches displacement (cylinder volume)

rhp rated horsepower

mfr manufacturer

city or highway?

vehicle weight

Often, we are interested in predicting one variable, say
mpg, from the others.
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Response and Predictor Variables
miles per gallon (mpg)

car or truck?

cubic inches displacement (cylinder volume)

rhp rated horsepower

mfr manufacturer

city or highway?

vehicle weight

In this situation, mpg is considered a response and the
others are considered predictors

We want to find some way of using the predictors to
estimate value of the response variable
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Response and Predictor Variables
Of course, we already know the value of the response
variable for the entries in our data matrix.

It might seem odd that we would try to predict something
we already know.
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Response and Predictor Variables
Of course, we already know the value of the response
variable for the entries in our data matrix.

It might seem odd that we would try to predict something
we already know.

The real value the model is to predict the response variable
for combinations of the predictors that do not appear in our
data.

For example, suppose we were interested in the effect of
increasing the displacement of the engine in a certain
vehicle by 40 cubic inches.
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Response and Predictor Variables
Of course, we already know the value of the response
variable for the entries in our data matrix.

It might seem odd that we would try to predict something
we already know.

The real value the model is to predict the response variable
for combinations of the predictors that do not appear in our
data.

For example, suppose we were interested in the effect of
increasing the displacement of the engine in a certain
vehicle by 40 cubic inches.

If we increase the value of the corresponding predictor
variable by 40, and keep the others the same, we can
estimate the effect without actually having to build a
modified vehicle.
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Linear Models
The simplest type of mathematical model we can have is a
linear model
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The simplest type of mathematical model we can have is a
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A linear model estimates the response variable as a
weighted average of the predictors.
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Linear Models
The simplest type of mathematical model we can have is a
linear model

A linear model estimates the response variable as a
weighted average of the predictors.

If we label the response variable Y and the predictors
X1, X2, . . . , Xn, the general form of a linear model is:

Y = β1 · X1 + β2 · X2 + · · · + βn · Xn
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Y = β1 · X1 + β2 · X2 + · · · + βn · Xn

The β values are constants that we need to assign values
to.
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Linear Models
The simplest type of mathematical model we can have is a
linear model

A linear model estimates the response variable as a
weighted average of the predictors.

If we label the response variable Y and the predictors
X1, X2, . . . , Xn, the general form of a linear model is:

Y = β1 · X1 + β2 · X2 + · · · + βn · Xn

The β values are constants that we need to assign values
to.

We choose the β values that "best" predict our measured
responses from the corresponding predictors.
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Linear Models
The term "best" needs some clarification.
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Linear Models
The term "best" needs some clarification.

Generally with real data, it will be impossible to find values
for the βs that exactly predict our observed response
variables.

So the equation

Y = β1 · X1 + β2 · X2 + · · · + βn · Xn

cannot possibly hold for all of the rows in our data table.
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Linear Models
The term "best" needs some clarification.

Generally with real data, it will be impossible to find values
for the βs that exactly predict our observed response
variables.

So the equation

Y = β1 · X1 + β2 · X2 + · · · + βn · Xn

cannot possibly hold for all of the rows in our data table.

Since equality is impossible, we try to make the difference
between the predicted and actual response variables as
small as possible:

difference = Y − (β1 · X1 + β2 · X2 + · · · + βn · Xn)
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Linear Models
Actually we determine the β values that make the total of
the squares of these differences as small as possible.

We use squares of the differences to prevent positive and
negative differences from cancelling out.
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Linear Models
Actually we determine the β values that make the total of
the squares of these differences as small as possible.

We use squares of the differences to prevent positive and
negative differences from cancelling out.

The term linear least squares models or just linear models
refers to the collection of models based on this technique.
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Linear Models
Actually we determine the β values that make the total of
the squares of these differences as small as possible.

We use squares of the differences to prevent positive and
negative differences from cancelling out.

The term linear least squares models or just linear models
refers to the collection of models based on this technique.

The following techniques are special types of linear models
analysis:

Analysis of Variance

Simple and Multiple Regression

Analysis of Covariance
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Linear Models
Analysis of Variance

Simple and Multiple Regression

Analysis of Covariance

Often these are presented as entirely separate topics, but in
fact they are all essentially the same.
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Analysis of Variance

Simple and Multiple Regression

Analysis of Covariance

Often these are presented as entirely separate topics, but in
fact they are all essentially the same.

Each of them estimates the β values of a linear equation of
the form

Y = β1 · X1 + β2 · X2 + · · · + βn · Xn
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Linear Models
Analysis of Variance

Simple and Multiple Regression

Analysis of Covariance

Often these are presented as entirely separate topics, but in
fact they are all essentially the same.

Each of them estimates the β values of a linear equation of
the form

Y = β1 · X1 + β2 · X2 + · · · + βn · Xn

The difference is in the nature of the predictor variables Xi

(whether they are categorical or continuous).
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Linear Models
The relationship between the classical types of analysis
and the nature of the predictor variables is:
Classical name Predictor variables
Analysis of Variance All predictors are categorical
Regression All predictors are continuous
Analysis of Covariance Some categorical, some continuous
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Linear Models
The relationship between the classical types of analysis
and the nature of the predictor variables is:
Classical name Predictor variables
Analysis of Variance All predictors are categorical
Regression All predictors are continuous
Analysis of Covariance Some categorical, some continuous

Current statistical software reflects the unified view as most
packages provide a general linear model routine that
handles all three situations.
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Linear Models
The relationship between the classical types of analysis
and the nature of the predictor variables is:
Classical name Predictor variables
Analysis of Variance All predictors are categorical
Regression All predictors are continuous
Analysis of Covariance Some categorical, some continuous

Current statistical software reflects the unified view as most
packages provide a general linear model routine that
handles all three situations.

In fact, the set of equations the program needs to solve to
find the β values is the same in all three cases.
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Linear Models
Returning to our EPA mileage data example, we would
probably categorize the variables as follows:
Variable Type
mpg (miles per gallon) response
c/t (car or truck) categorical predictor
cid (displacement) continuous predictor
rhp (horsepower) continuous predictor
mfr (manufacturer) categorical predictor
C/H (city/hwy) categorical predictor
etw (weight) continuous predictor
vpc (cylinders) continuous predictor
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Linear Models
Returning to our EPA mileage data example, we would
probably categorize the variables as follows:
Variable Type
mpg (miles per gallon) response
c/t (car or truck) categorical predictor
cid (displacement) continuous predictor
rhp (horsepower) continuous predictor
mfr (manufacturer) categorical predictor
C/H (city/hwy) categorical predictor
etw (weight) continuous predictor
vpc (cylinders) continuous predictor

A variable like vpc, which assumes only a few values (4,6,8)
may be treated as either categorical or continuous.
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Continuous Predictors
Generally there is one βi parameter for each continuous
predictor.
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Continuous Predictors
Generally there is one βi parameter for each continuous
predictor.

If we made a table of the response and predictor values for
the EPA data, with weight as the predictor, the
data/response matrix might look like this:
mpg weight
18.4 5400
22.1 4400
32.8 3300
17.1 6000
18.2 5600
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Continuous Predictors
Actually, there would probably be one additional β known as
the intercept,

Y = β0 + β1 · X
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Continuous Predictors
Actually, there would probably be one additional β known as
the intercept,

Y = β0 + β1 · X

mpg weight
18.4 1 5400
22.1 1 4400
32.8 1 3300
17.1 1 6000
18.2 1 5600
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Continuous Predictors
Actually, there would probably be one additional β known as
the intercept,

Y = β0 + β1 · X

mpg weight
18.4 1 5400
22.1 1 4400
32.8 1 3300
17.1 1 6000
18.2 1 5600

The matrix of coefficients in the right hand box is called the
design matrix for the model.
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Continuous Predictors
The interpretation of the design matrix is that the numbers

are multipliers for the β values:

Equation:
18.4 = 1 · β0 + 5400 · β1

22.1 = 1 · β0 + 4400 · β1

32.8 = 1 · β0 + 3300 · β1

17.8 = 1 · β0 + 6000 · β1

18.2 = 1 · β0 + 5600 · β1
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Continuous Predictors
The interpretation of the design matrix is that the numbers

are multipliers for the β values:

Equation:
18.4 = 1 · β0 + 5400 · β1

22.1 = 1 · β0 + 4400 · β1

32.8 = 1 · β0 + 3300 · β1

17.8 = 1 · β0 + 6000 · β1

18.2 = 1 · β0 + 5600 · β1

Each data observation produces one equation in this
system.
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Continuous Predictors
The interpretation of the design matrix is that the numbers

are multipliers for the β values:

Equation:
18.4 = 1 · β0 + 5400 · β1

22.1 = 1 · β0 + 4400 · β1

32.8 = 1 · β0 + 3300 · β1

17.8 = 1 · β0 + 6000 · β1

18.2 = 1 · β0 + 5600 · β1

Each data observation produces one equation in this
system.

The system almost never has an exact solution. The "best"
solutions minimizes the squared differences between the
predicted and actual response values.
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Categorical Predictors
Categorical predictors have a separate β parameter for
each value they assume.
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Categorical predictors have a separate β parameter for
each value they assume.

For the categorical variable car or truck, there would be two
β values, one for cars and one for trucks.
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Categorical Predictors
Categorical predictors have a separate β parameter for
each value they assume.

For the categorical variable car or truck, there would be two
β values, one for cars and one for trucks.

The design matrix has one column for each of these two
beta values. Suppose entries 1, 4, and 5 are trucks, and β1

represents cars while β2 represents trucks. The design

matrix is:

mpg car truck
18.4 1 0 1
22.1 1 1 0
32.8 1 1 0
17.1 1 0 1
18.2 1 0 1
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Categorical Predictors
The interpretation of the design matrix is that the numbers
are multipliers for the β values:
Equation:
18.4 = 1 · β0 + 0 · β1 + 1 · β2

22.1 = 1 · β0 + 1 · β1 + 0 · β2

32.8 = 1 · β0 + 1 · β1 + 0 · β2

17.8 = 1 · β0 + 0 · β1 + 1 · β2

18.2 = 1 · β0 + 0 · β1 + 1 · β2
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Categorical Predictors
The interpretation of the design matrix is that the numbers
are multipliers for the β values:
Equation:
18.4 = 1 · β0 + 0 · β1 + 1 · β2

22.1 = 1 · β0 + 1 · β1 + 0 · β2

32.8 = 1 · β0 + 1 · β1 + 0 · β2

17.8 = 1 · β0 + 0 · β1 + 1 · β2

18.2 = 1 · β0 + 0 · β1 + 1 · β2

Again, each data observation produces one equation in this
system.
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Categorical Predictors
The interpretation of the design matrix is that the numbers
are multipliers for the β values:
Equation:
18.4 = 1 · β0 + 0 · β1 + 1 · β2

22.1 = 1 · β0 + 1 · β1 + 0 · β2

32.8 = 1 · β0 + 1 · β1 + 0 · β2

17.8 = 1 · β0 + 0 · β1 + 1 · β2

18.2 = 1 · β0 + 0 · β1 + 1 · β2

Again, each data observation produces one equation in this
system.

The "best" solutions minimizes the squared differences
between the predicted and actual response values.
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