Set Theory Introduction

We will define a set as a collection of elements. A set A is said to be well-defined if, given an arbitrary element, we can always tell whether or not the element belongs to A.

Set Theory Introduction

We will define a set as a collection of elements. A set A is said to be well-defined if, given an arbitrary element, we can always tell whether or not the element belongs to A.

An example of a well-defined set would be the set of all members of the class of 2012 at Stonehill on 1/1/2010.

Set Theory Introduction

We will define a set as a collection of elements. A set A is said to be well-defined if, given an arbitrary element, we can always tell whether or not the element belongs to A.

An example of a well-defined set would be the set of all members of the class of 2012 at Stonehill on 1/1/2010.

An example of a set that is not well-defined would be the set of all healthy people.

Set Theory Introduction

The easiest way to specify a set is to list its elements, usually enclosed in curly brackets $\}$. The set of positive integers less than 9 would be denoted by:

$$
A=\{1,2,3,4,5,6,7,8\}
$$

In a list of elements, nothing is ever repeated; if the element is listed once, it belongs to the set, otherwise it does not.

Set Theory Introduction

The easiest way to specify a set is to list its elements, usually enclosed in curly brackets $\}$. The set of positive integers less than 9 would be denoted by:

$$
A=\{1,2,3,4,5,6,7,8\}
$$

In a list of elements, nothing is ever repeated; if the element is listed once, it belongs to the set, otherwise it does not.

Set Theory Introduction

Infinite sets can be specified using a notation called ellipses. The set of integers greater than 3 is:

$$
A=\{3,4,5,6, \ldots\}
$$

Set Theory Introduction

Infinite sets can be specified using a notation called ellipses. The set of integers greater than 3 is:

$$
A=\{3,4,5,6, \ldots\}
$$

Still larger sets can be specified using set builder notation. The set of real numbers between three and five, inclusive, is

$$
A=\{x: 3 \leq x \leq 5\}
$$

read " A is the set of all x values such that $3 \leq x \leq 5$.

Set Theory Introduction

Infinite sets can be specified using a notation called ellipses. The set of integers greater than 3 is:

$$
A=\{3,4,5,6, \ldots\}
$$

Still larger sets can be specified using set builder notation. The set of real numbers between three and five, inclusive, is

$$
A=\{x: 3 \leq x \leq 5\}
$$

read " A is the set of all x values such that $3 \leq x \leq 5$.

Set Theory Introduction

Definition: set union The union of two sets A and B, denoted by $A \cup B$, is the set consisting of all elements that either belong to A, belong to B, or belong to both A and B.

Set Theory Introduction

Definition: set union The union of two sets A and B, denoted by $A \cup B$, is the set consisting of all elements that either belong to A, belong to B, or belong to both A and B.
$A=\{1,3,4,5,9\} \quad B=\{1,2,9,10,11\} \quad$ then $\quad A \cup B=\{1,2,3,4$, ,

Set Theory Introduction

Definition: set intersection The intersection of two sets A and B, denoted by $A \cap B$, is the set consisting of all elements that belong to both A and B.

Set Theory Introduction

Definition: set intersection The intersection of two sets A and B, denoted by $A \cap B$, is the set consisting of all elements that belong to both A and B.
$A=\{1,3,4,5,9\} \quad B=\{1,2,9,10,11\} \quad$ then $A \cap B=\{1,9\}$

Set Theory Introduction

Definition: set complement The complement of a set A, denoted by A^{\prime} or A^{c}, is the set consisting of all elements that do not belong to A. Implicit in the definition is a universal set U, and the complement of A is the set of all elements of U that do not belong to A. In many applications it is obvious what the universal set is; otherwise, it must be specified.

Set Theory Introduction

Definition: set complement The complement of a set A, denoted by A^{\prime} or A^{c}, is the set consisting of all elements that do not belong to A. Implicit in the definition is a universal set U, and the complement of A is the set of all elements of U that do not belong to A. In many applications it is obvious what the universal set is; otherwise, it must be specified.

Suppose
$U=\{1,2,3,4, \ldots\} \quad$ and $\quad A=\{1,3,5,7, \ldots\} \quad$ then $\quad A^{\prime}=\{2,4$,

Set Theory Introduction

Definition: null set The set with no elements is called the null set and denoted by \emptyset.

Set Theory Introduction

Definition: null set The set with no elements is called the null set and denoted by \emptyset.

As we will see, the null set \emptyset is an extremely useful concept.

Set Theory Introduction

Our definition of a set is rather vague, but it is generally agreed that it is impossible to give a precise definition of a set that stands up to scrutiny. Historically, problems have arisen when broad constructs such as "the set consisting of all sets" are permitted.

Set Theory Introduction

Our definition of a set is rather vague, but it is generally agreed that it is impossible to give a precise definition of a set that stands up to scrutiny. Historically, problems have arisen when broad constructs such as "the set consisting of all sets" are permitted.

Perhaps the most famous of these is the Russell paradox due to Bertrand Russell: Consider the set A consisting of all sets that do not contain themselves as an element. Does A contain itself?

Experiments and Outcomes

Definition: experiment The author defines an experiment as any action or process whose outcome is subject to uncertainty.

Experiments and Outcomes

Definition: experiment The author defines an experiment as any action or process whose outcome is subject to uncertainty.

Examples of experiments include tossing a coin, rolling a single die, drawing a card from a shuffled deck, having someone pick a number between one and ten, and so on.

Experiments and Outcomes

Definition: outcome An outcome is the result of performing an experiment.

Experiments and Outcomes

Definition: outcome An outcome is the result of performing an experiment.

The coin toss experiment is considered to have two outcomes, heads and tails. The experiment consisting of rolling a die has six outcomes (one through six). Drawing a card has 52 outcomes.

Experiments and Outcomes

Definition: sample space The sample space \mathcal{S} of an experiment is the set containing all possible outcomes of the experiment.

Experiments and Outcomes

Definition: sample space The sample space \mathcal{S} of an experiment is the set containing all possible outcomes of the experiment.

The sample space of the coin toss experiment, abbreviating heads and tails as H and T respectively, is:

$$
\mathcal{S}=\{H, T\}
$$

Experiments and Outcomes

The sample space of the die rolling experiment is:

$$
\mathcal{S}=\{1,2,3,4,5,6\}
$$

Experiments and Outcomes

The sample space of the die rolling experiment is:

$$
\mathcal{S}=\{1,2,3,4,5,6\}
$$

The sample space of the card drawing experiment has 52 elements,

$$
\mathcal{S}=\{A \diamond, K \odot, \ldots, 2 \circlearrowleft, A \diamond, \ldots, 2 \diamond, A \boldsymbol{\phi}, \ldots, 2 \boldsymbol{\phi}, A \boldsymbol{\downarrow}, \ldots, 2 \boldsymbol{\uparrow}\}
$$

Experiments and Outcomes

Definition: event An event is a subset of the sample space \mathcal{S}. If the event consists of a single outcome, it is called a simple event. Otherwise, it is a compound event.

Experiments and Outcomes

Definition: event An event is a subset of the sample space \mathcal{S}. If the event consists of a single outcome, it is called a simple event. Otherwise, it is a compound event.

In the die rolling experiment, the event "an even number is rolled" is the following subset of \mathcal{S} :

$$
A=\{2,4,6\}
$$

Experiments and Outcomes

Definition: event An event is a subset of the sample space \mathcal{S}. If the event consists of a single outcome, it is called a simple event. Otherwise, it is a compound event.

In the die rolling experiment, the event "an even number is rolled" is the following subset of \mathcal{S} :

$$
A=\{2,4,6\}
$$

In the card drawing experiment, the event "a red queen is drawn" is

$$
A=\{Q \triangleleft, Q \diamond\}
$$

Experiments and Outcomes

Definition: event An event is a subset of the sample space \mathcal{S}. If the event consists of a single outcome, it is called a simple event. Otherwise, it is a compound event.

In the die rolling experiment, the event "an even number is rolled" is the following subset of \mathcal{S} :

$$
A=\{2,4,6\}
$$

In the card drawing experiment, the event "a red queen is drawn" is

$$
A=\{Q \diamond, Q \diamond\}
$$

Both of these are compound events.

