Bernoulli Random Variables

Recall that a Bernoulli random variable is a random variable whose only possible values are 0 and 1.

Bernoulli Random Variables

Recall that a Bernoulli random variable is a random variable whose only possible values are 0 and 1 .

In general we can consider a Bernoulli random variable to be the result of an experiment with two outcomes, which for convenience we will label "success" and "failure"

Bernoulli Random Variables

Recall that a Bernoulli random variable is a random variable whose only possible values are 0 and 1.

In general we can consider a Bernoulli random variable to be the result of an experiment with two outcomes, which for convenience we will label "success" and "failure"

As before we define the Bernoulli random variable X by agreeing to assign the value of 1 to X if the result of the experiment is "success", and zero if the result is "failure":
$X= \begin{cases}1 & \text { if the outcome of the experiment is "success" } \\ 0 & \text { if the outcome of the experiment is "failure" }\end{cases}$

Bernoulli Random Variables

To be consistent with the Kolmogorov probability axioms the probability of "success" must be a number p between zero and one (inclusive), and the probability of "failure", which is the compliment of "success", must be $1-p$.

Bernoulli Random Variables

To be consistent with the Kolmogorov probability axioms the probability of "success" must be a number p between zero and one (inclusive), and the probability of "failure", which is the compliment of "success", must be $1-p$.

This results in the following probability mass function $f(x)$ which we will refer to as the Bernoulli distribution:

$$
f(x)=P(X=x)=\left\{\begin{array}{lll}
p & \text { if } & x=1 \\
1-p & \text { if } & x=0
\end{array}\right.
$$

Bernoulli Random Variables

To be consistent with the Kolmogorov probability axioms the probability of "success" must be a number p between zero and one (inclusive), and the probability of "failure", which is the compliment of "success", must be $1-p$.

This results in the following probability mass function $f(x)$ which we will refer to as the Bernoulli distribution:

$$
f(x)=P(X=x)=\left\{\begin{array}{lll}
p & \text { if } & x=1 \\
1-p & \text { if } & x=0
\end{array}\right.
$$

Most of the discrete probability distributions we will now consider are related to the Bernoulli distribution.

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

The following discrete probability distributions arise from this model:

If the number of trials n is fixed in advance, the number of successes X has a binomial distribution

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

The following discrete probability distributions arise from this model:

If the number of trials n is fixed in advance, the number of successes X has a binomial distribution

If trials continue indefinitely until the first success is obtained, the number of failures obtained X has a geometric distribution.

Discrete Distributions

Now consider a series of independent experiments, each of which produces a Bernoulli random variable with probability of success p (p is the same for all of the trials)

The following discrete probability distributions arise from this model:

If the number of trials n is fixed in advance, the number of successes X has a binomial distribution

If trials continue indefinitely until the first success is obtained, the number of failures obtained X has a geometric distribution.

If trials continue indefinitely until the $r^{\text {th }}$ success is obtained, the number of failures obtained X has a negative binomial distribution.

Discrete Distributions

Note that the geometric distribution is a special case of the negative binomial distribution, with $r=1$.

Discrete Distributions

Note that the geometric distribution is a special case of the negative binomial distribution, with $r=1$.

Unfortunately, different authors define the random variable X in the negative binomial (and geometric) distribution in different ways.

Discrete Distributions

Note that the geometric distribution is a special case of the negative binomial distribution, with $r=1$.

Unfortunately, different authors define the random variable X in the negative binomial (and geometric) distribution in different ways.

However, the characterization as a sequence of Bernoulli trials that ends at the $r^{\text {th }}$ success is common to all definitions.

Discrete Distributions

Note that the geometric distribution is a special case of the negative binomial distribution, with $r=1$.

Unfortunately, different authors define the random variable X in the negative binomial (and geometric) distribution in different ways.

However, the characterization as a sequence of Bernoulli trials that ends at the $r^{\text {th }}$ success is common to all definitions.

That said, you should be prepared to encounter a different definition of X (and a different, but equivalent pmf)if you look at a different text.

Discrete Distributions

The other related distribution we will consider is the Poisson distribution.

Discrete Distributions

The other related distribution we will consider is the Poisson distribution.

The Poisson is a limiting form of the binomial distribution that you get if you let n become very large and the probability of success p very small, but always keep $n p=\lambda$ the same.

Discrete Distributions

The other related distribution we will consider is the Poisson distribution.

The Poisson is a limiting form of the binomial distribution that you get if you let n become very large and the probability of success p very small, but always keep $n p=\lambda$ the same.

Another way to say this is that we take binomial random variables with larger and larger n, but we keep the expected number of successes $n p=\lambda$ the same for all of them.

Discrete Distributions

The other related distribution we will consider is the Poisson distribution.

The Poisson is a limiting form of the binomial distribution that you get if you let n become very large and the probability of success p very small, but always keep $n p=\lambda$ the same.

Another way to say this is that we take binomial random variables with larger and larger n, but we keep the expected number of successes $n p=\lambda$ the same for all of them.

The limit of the distribution of such a sequence of random variables as $n \rightarrow \infty$ is a Poisson.

The Binomial Distribution

The binomial experiment consists of:

- n independent Bernoulli trials are performed
- The random variable X is the sum of the results (i.e., the number of successes)
- The probability of success p is the same for all trials

The Binomial Distribution

The binomial experiment consists of:

- n independent Bernoulli trials are performed
- The random variable X is the sum of the results (i.e., the number of successes)
- The probability of success p is the same for all trials

The probability mass function (pmf) $f(x)$ is:

$$
f(x)=P(X=x)=b(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1,2, \ldots
$$

The Binomial Distribution

It is not obvious, but if you sum the values of $f(x)$ over all values from zero to n, the sum is one.

$$
\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x}=1
$$

The Binomial Distribution

It is not obvious, but if you sum the values of $f(x)$ over all values from zero to n, the sum is one.

$$
\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x}=1
$$

One way to make this clear is to consider the algebraic identity

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}
$$

The Binomial Distribution

If we let x be the probability of success p and y the probability of failure $1-p$, on substitution we get

$$
[p+(1-p)]^{n}=1^{n}=1=\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x} \quad 0 \leq p \leq 1
$$

The Binomial Distribution

If we let x be the probability of success p and y the probability of failure $1-p$, on substitution we get

$$
[p+(1-p)]^{n}=1^{n}=1=\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x} \quad 0 \leq p \leq 1
$$

For any distribution, the cumulative distribution function (cdf) $F(x)$, is always defined by

$$
F(x)=P(X \leq x)
$$

The Binomial Distribution

If we let x be the probability of success p and y the probability of failure $1-p$, on substitution we get

$$
[p+(1-p)]^{n}=1^{n}=1=\sum_{x=0}^{n}\binom{n}{x} p^{x}(1-p)^{n-x} \quad 0 \leq p \leq 1
$$

For any distribution, the cumulative distribution function (cdf) $F(x)$, is always defined by

$$
F(x)=P(X \leq x)
$$

For the binomial distribution, this gives:

$$
F(x)=\sum_{i=0}^{x}\binom{n}{i} p^{i}(1-p)^{n-i}
$$

The Binomial Distribution

For the binomial distribution, there is no simple expression for $F(x)$

The Binomial Distribution

For the binomial distribution, there is no simple expression for $F(x)$

Values of $F(x)$ for the binomial can be obtained from:

- Tables (See table A. 1 in the appendix)
- Spreadsheets: = BINOMDIST($x, n, p, T R U E)$
- $\mathrm{R}: \operatorname{pbinom}(x, n, p)$

The Binomial Distribution

For the binomial distribution, there is no simple expression for $F(x)$

Values of $F(x)$ for the binomial can be obtained from:

- Tables (See table A. 1 in the appendix)
- Spreadsheets: = BINOMDIST($x, n, p, T R U E)$
- R: $\operatorname{pbinom}(x, n, p)$

Example: A fair coin is tossed 10 times. What is the probability that 7 or fewer heads turn up?

The Binomial Distribution

For the binomial distribution, there is no simple expression for $F(x)$

Values of $F(x)$ for the binomial can be obtained from:

- Tables (See table A. 1 in the appendix)
- Spreadsheets: = BINOMDIST($x, n, p, T R U E)$
- R: $\operatorname{pbinom}(x, n, p)$

Example: A fair coin is tossed 10 times. What is the probability that 7 or fewer heads turn up?

We want $P(X \leq 7)$, the probability that a binomial experiment with 10 trials and probability of success 0.5 produces 7 or fewer "successes".

The Binomial Distribution

If you are using a spreadsheet, enter:
$=\operatorname{BINOMDIST}(7,10,0.5, T R U E)$

The Binomial Distribution

If you are using a spreadsheet, enter:
$=\operatorname{BINOMDIST}(7,10,0.5, \operatorname{TRUE})$
If you are using R, enter:
$\operatorname{pdist}(7,10,0.5)$

The Binomial Distribution

If you are using a spreadsheet, enter:
$=B I N O M D I S T(7,10,0.5, T R U E)$
If you are using R, enter:
$p \operatorname{dist}(7,10,0.5)$
If you are using Table A.1, look under $n=10$ on page 664, in the row with $x=7$ and column with $p=0.50$

The Binomial Distribution

If you are using a spreadsheet, enter:
$=B I N O M D I S T(7,10,0.5, T R U E)$
If you are using R, enter:
$p \operatorname{dist}(7,10,0.5)$
If you are using Table A.1, look under $n=10$ on page 664, in the row with $x=7$ and column with $p=0.50$

All of these should give the value $F(7)=.945$

The Binomial Distribution

If you are using a spreadsheet, enter:
$=\operatorname{BINOMDIST}(7,10,0.5, T R U E)$
If you are using R, enter:
pdist $(7,10,0.5)$
If you are using Table A.1, look under $n=10$ on page 664, in the row with $x=7$ and column with $p=0.50$

All of these should give the value $F(7)=.945$
This means that if we toss a fair coin 10 times, the probability of 7 or fewer heads is .945

The Binomial Distribution

If you are using a spreadsheet, enter:
$=B I N O M D I S T(7,10,0.5, T R U E)$
If you are using R, enter:
$\operatorname{pdist}(7,10,0.5)$
If you are using Table A.1, look under $n=10$ on page 664, in the row with $x=7$ and column with $p=0.50$

All of these should give the value $F(7)=.945$
This means that if we toss a fair coin 10 times, the probability of 7 or fewer heads is .945

If we repeat the experiment, tossing the coin 10 times, over and over, the proportion of all of the replications of the experiment that have 7 or fewer heads will approach . 945 .

The Binomial Distribution

Example: Suppose every time the Red Sox play the Yankees, the probability that the Red Sox win is 0.6.

If they play 7 games, what is the probability that the Red Sox win 5 or fewer?

The Binomial Distribution

Example: Suppose every time the Red Sox play the Yankees, the probability that the Red Sox win is 0.6.

If they play 7 games, what is the probability that the Red Sox win 5 or fewer?

If we assume that each game is an independent Bernoulli trial with probability of "success" equal to 0.6 , then the number of games the Red Sox win will have a binomial distribution with $n=7$ and $p=0.6$.

The Binomial Distribution

We want to find the probability that the Red Sox win 5 or fewer,

$$
P(X \leq 5)=F(5)
$$

The Binomial Distribution

We want to find the probability that the Red Sox win 5 or fewer,

$$
P(X \leq 5)=F(5)
$$

Since there is no simple formula for F for a binomial distribution, we have to use one of the methods listed earlier

The Binomial Distribution

We want to find the probability that the Red Sox win 5 or fewer,

$$
P(X \leq 5)=F(5)
$$

Since there is no simple formula for F for a binomial distribution, we have to use one of the methods listed earlier In R, enter pdist(5,7,0.6)

The Binomial Distribution

We want to find the probability that the Red Sox win 5 or fewer,

$$
P(X \leq 5)=F(5)
$$

Since there is no simple formula for F for a binomial distribution, we have to use one of the methods listed earlier In R, enter pdist(5,7,0.6)

The result should be 0.841

The Binomial Distribution

Example: A baseball player has a .300 batting average.
If the player gets to bat five times in a game, what is the probability that he gets one hit or less:

The Binomial Distribution

Example: A baseball player has a .300 batting average.
If the player gets to bat five times in a game, what is the probability that he gets one hit or less:

We'll assume a binomial distribution with $n=5$ and $p=0.300$, then we want $F(1)=P(X \leq 1)$:

In R enter: pdist(1,5,0.300)

The Binomial Distribution

Example: A baseball player has a .300 batting average.
If the player gets to bat five times in a game, what is the probability that he gets one hit or less:

We'll assume a binomial distribution with $n=5$ and
$p=0.300$, then we want $F(1)=P(X \leq 1)$:
In R enter: pdist(1,5,0.300)
The result is 0.528 , so in games where a .300 hitter bats five times, more than 50 percent of the time they get one hit or less.

The Binomial Distribution

Example: The probability that it rains on a given weekend is 0.20 .

In a month with four weekends, what is the probability that two or fewer are rainy?

The Binomial Distribution

Example: The probability that it rains on a given weekend is 0.20 .

In a month with four weekends, what is the probability that two or fewer are rainy?

Assume a binomial distribution with $n=4$ and $p=0.2$.
In R enter: pdist(2,4,0.20)

The Binomial Distribution

Example: The probability that it rains on a given weekend is 0.20 .

In a month with four weekends, what is the probability that two or fewer are rainy?

Assume a binomial distribution with $n=4$ and $p=0.2$.
In R enter: pdist(2,4,0.20)
The result is 0.9728 ,

The Binomial Distribution

Example: If

$$
F(x)=P(X \leq x)
$$

is the probability of the event $A=$ "x or fewer successes", the compliment of this event A^{\prime} is "more than x successes"

Recall that the probability of the compliment A^{\prime} is always $1-P(A)$.

If the chance of rain on a weekend is 0.2 and there are four weekends in a month, what is the probability that it rains on more than 2 weekends?

The Binomial Distribution

Example: If

$$
F(x)=P(X \leq x)
$$

is the probability of the event $A=$ "x or fewer successes", the compliment of this event A^{\prime} is "more than x successes"

Recall that the probability of the compliment A^{\prime} is always $1-P(A)$.

If the chance of rain on a weekend is 0.2 and there are four weekends in a month, what is the probability that it rains on more than 2 weekends?

As before, assume a binomial distribution with $n=4$ and $p=0.2$.

In R enter: 1-pdist(2,4,0.20)

The Binomial Distribution

Example: If

$$
F(x)=P(X \leq x)
$$

is the probability of the event $A=$ "x or fewer successes", the compliment of this event A^{\prime} is "more than x successes"

Recall that the probability of the compliment A^{\prime} is always $1-P(A)$.

If the chance of rain on a weekend is 0.2 and there are four weekends in a month, what is the probability that it rains on more than 2 weekends?

As before, assume a binomial distribution with $n=4$ and $p=0.2$.

In R enter: 1-pdist(2,4,0.20)
The result is 0.0272 ,

The Binomial Distribution

The expected value of a binomial random variable $E(X)$ is:

$$
E(X)=\sum_{x=0}^{n} x \cdot f(x)
$$

The Binomial Distribution

The expected value of a binomial random variable $E(X)$ is:

$$
\begin{gathered}
E(X)=\sum_{x=0}^{n} x \cdot f(x) \\
E(X)=\sum x \cdot\binom{n}{x} p^{x}(1-p)^{n-x}=n p
\end{gathered}
$$

The Binomial Distribution

To find the variance $V(X)$ of a binomial random variable, first we find $E\left(X^{2}\right)$:

$$
E\left(X^{2}\right)=\sum_{x=0}^{n} x^{2} \cdot f(x)
$$

The Binomial Distribution

To find the variance $V(X)$ of a binomial random variable, first we find $E\left(X^{2}\right)$:

$$
\begin{gathered}
E\left(X^{2}\right)=\sum_{x=0}^{n} x^{2} \cdot f(x) \\
E\left(X^{2}\right)=\sum x^{2} \cdot\binom{n}{x} p^{x}(1-p)^{n-x}=n^{2} p^{2}-n p^{2}+n p
\end{gathered}
$$

The Binomial Distribution

To find the variance $V(X)$ of a binomial random variable, first we find $E\left(X^{2}\right)$:

$$
\begin{gathered}
E\left(X^{2}\right)=\sum_{x=0}^{n} x^{2} \cdot f(x) \\
E\left(X^{2}\right)=\sum x^{2} \cdot\binom{n}{x} p^{x}(1-p)^{n-x}=n^{2} p^{2}-n p^{2}+n p
\end{gathered}
$$

Then

$$
V(X)=E\left(X^{2}\right)-[E(X)]^{2}=n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2}
$$

and

$$
V(X)=n p(1-p)
$$

The Binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a binomial experiment with $n=6$ trials and probability of success $p=0.4$:
$x<-$ rbinom(1000000,6,0.4)

The Binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a binomial experiment with $n=6$ trials and probability of success $p=0.4$:
$x<-$ rbinom(1000000,6,0.4)
Now plot a histogram of the results:
$\operatorname{hist}(x)$

The Binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a binomial experiment with $n=6$ trials and probability of success $p=0.4$:
$x<-$ rbinom(1000000,6,0.4)
Now plot a histogram of the results:
hist(x)
To get a table of the results enter table(x)

The Binomial Distribution

Now we will perform some numerical experiments.
First generate a sample of $1,000,000$ observations for a binomial experiment with $n=6$ trials and probability of success $p=0.4$:
$x<-$ rbinom(1000000,6,0.4)
Now plot a histogram of the results:
hist(x)
To get a table of the results enter table(x)

The results should look something like:

0	1	2	3	4	5
77647	258841	346623	230275	76253	10361

The Binomial Distribution

$\begin{array}{llllll}77647 & 258841 & 346623 & 230275 & 76253 & 10361\end{array}$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dbinom(0,5,0.4)

The Binomial Distribution

$\begin{array}{llllll}77647 & 258841 & 346623 & 230275 & 76253 & 10361\end{array}$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dbinom(0,5,0.4)
The result should be something like
[1] 0.07776

The Binomial Distribution

$\begin{array}{llllll}77647 & 258841 & 346623 & 230275 & 76253 & 10361\end{array}$ Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dbinom(0,5,0.4)
The result should be something like
[1] 0.07776
To get the probability that $X=1$ enter dbinom(1,5,0.4)

The Binomial Distribution

$$
\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

$\begin{array}{llllll}77647 & 258841 & 346623 & 230275 & 76253 & 10361\end{array}$
Now compare the frequencies to the probabilities.
First compute the probability that $X=0$:
dbinom(0,5,0.4)
The result should be something like
[1] 0.07776
To get the probability that $X=1$ enter
dbinom(1,5,0.4)
This time the results should look something like:
[1] 0.2592

The Binomial Distribution

Next compute the probability that $X=2$:
dbinom(2,5,0.4)

The Binomial Distribution

Next compute the probability that $X=2$:
dbinom($2,5,0.4$)
The result should be something like
[1] 0.3456

The Binomial Distribution

Next compute the probability that $X=2$:
dbinom $(2,5,0.4)$
The result should be something like
[1] 0.3456
To get the probability that $X=5$ enter dbinom(1,5,0.4)

The Binomial Distribution

$\begin{array}{llllll}77647 & 258841 & 346623 & 230275 & 76253 & 10361\end{array}$ Next compute the probability that $X=2$:
dbinom $(2,5,0.4)$
The result should be something like
[1] 0.3456
To get the probability that $X=5$ enter
dbinom $(1,5,0.4)$
This time the results should look something like:
[1] 0.01024

The Binomial Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=n p=5 \cdot 0.4=2
$$

The Binomial Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=n p=5 \cdot 0.4=2
$$

To compute the sample mean \bar{x}, enter mean(x)

The Binomial Distribution

The expected value $E(X)$ in this case is:

$$
E(X)=n p=5 \cdot 0.4=2
$$

To compute the sample mean \bar{x}, enter mean(x) The result should be something like [1] 1.999759

The Binomial Distribution

The variance $V(X)$ in this case is:

$$
V(X)=n p(1-p)=5 \cdot 0.4 \cdot 0.6=1.2
$$

The Binomial Distribution

The variance $V(X)$ in this case is:

$$
V(X)=n p(1-p)=5 \cdot 0.4 \cdot 0.6=1.2
$$

To compute the sample variance s^{2}, enter $\operatorname{var}(x)$

The Binomial Distribution

The variance $V(X)$ in this case is:

$$
V(X)=n p(1-p)=5 \cdot 0.4 \cdot 0.6=1.2
$$

To compute the sample variance s^{2}, enter $\operatorname{var}(x)$ The result should be something like [1] 1.197966

The Binomial Distribution

At a certain intersection, the probability that a car goes stright through is 0.8.

If we observe 15 cars, what is the probability that 10 or fewer go straight through?

The Binomial Distribution

At a certain intersection, the probability that a car goes stright through is 0.8.

If we observe 15 cars, what is the probability that 10 or fewer go straight through?
Enter pbinom(10,15,0.8)

The Binomial Distribution

At a certain intersection, the probability that a car goes stright through is 0.8.

If we observe 15 cars, what is the probability that 10 or fewer go straight through?
Enter pbinom(10,15,0.8) The result should be . 164

The Binomial Distribution

92% of a certain airline's flights arrive on time.
On a day when the airline operates 30 flights, what is the probablility that more than 27 arrive on time?

The Binomial Distribution

92% of a certain airline's flights arrive on time.
On a day when the airline operates 30 flights, what is the probablility that more than 27 arrive on time?
Enter 1-pbinom(27,30,0.92)

The Binomial Distribution

92% of a certain airline's flights arrive on time.
On a day when the airline operates 30 flights, what is the probablility that more than 27 arrive on time?
Enter 1-pbinom(27,30,0.92) The result should be .565

