Question 1

What proportion of a population having a normal (bell curve) distribution with a mean of 50 and a standard deviation of 10 lies below 57 ?

Question 1

What proportion of a population having a normal (bell curve) distribution with a mean of 50 and a standard deviation of 10 lies below 57 ?

The proportion is 0.758
$=\operatorname{NORMDIST}(57,50,10, T R U E)$

Question 2

What proportion of a population having a normal (bell curve) distribution with a mean of 100 and a standard deviation of 15 lies below 125 ?

Question 2

What proportion of a population having a normal (bell curve) distribution with a mean of 100 and a standard deviation of 15 lies below 125 ?

The proportion is 0.952
$=\operatorname{NORMDIST}(125,100,15, T R U E)$

Question 3

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . Find the probability that a randomly selected individual scores below 450 on the SAT.

Question 3

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . Find the probability that a randomly selected individual scores below 450 on the SAT.

The probability is 0.309 . This is the same as the proportion of the population that scores below 450 .
$=\operatorname{NORMDIST}(450,500,100, T R U E)$

Question 4

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . Find the probability that a randomly selected individual scores above 650 on the SAT.

Question 4

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . Find the probability that a randomly selected individual scores above 650 on the SAT.

The probability is 0.067 . This is the same as the proportion of the population that scores above 650 .
$=1-\operatorname{NORMDIST}(650,500,100, T R U E)$

Question 5

What proportion of a population having a normal (bell curve) distribution with a mean of 100 and a standard deviation of 15 lies above 105?

Question 5

What proportion of a population having a normal (bell curve) distribution with a mean of 100 and a standard deviation of 15 lies above 105?

The proportion is 0.369
$=1-\operatorname{NORMDIST}(105,100,15, T R U E)$

Question 6

What proportion of a population having a normal (bell curve) distribution with a mean of 50 and a standard deviation of 10 lies above 47?

Question 6

What proportion of a population having a normal (bell curve) distribution with a mean of 50 and a standard deviation of 10 lies above 47?

The proportion is 0.618
$=1-\operatorname{NORMDIST}(47,50,10, \operatorname{TRUE})$

Question 7

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . What proportion of the population scores between 400 and 600 on the SAT?

Question 7

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . What proportion of the population scores between 400 and 600 on the SAT?

The proportion is $0.683 .68 .3 \%$ of people who take the SAT score between 400 and 600 .
$=\operatorname{NORMDIST}(600,500,100$, TRUE $)-$
NORMDIST(400, 500, 100, TRUE)

Question 8

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What proportion of the population scores between 95 and 105 on an IQ test?

Question 8

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What proportion of the population scores between 95 and 105 on an IQ test?

The proportion is 0.261 . 26.1% of people who take an IQ test score between 95 and 105.
$=\operatorname{NORMDIST}(105,100,15, T R U E)-$
NORMDIST(95, 100, 15,TRUE)

Question 9

What proportion of a population having a normal (bell curve) distribution with a mean of 50 and a standard deviation of 10 lies between 42 and 58 ?

Question 9

What proportion of a population having a normal (bell curve) distribution with a mean of 50 and a standard deviation of 10 lies between 42 and 58 ?

The proportion is 0.576
$=\operatorname{NORMDIST}(58,50,10, T R U E)-$
$\operatorname{NORMDIST}(42,50,10, T R U E)$

Question 10

What proportion of a population having a normal (bell curve) distribution with a mean of 150 and a standard deviation of 10 lies below 135 or above 165 ?

Question 10

What proportion of a population having a normal (bell curve) distribution with a mean of 150 and a standard deviation of 10 lies below 135 or above 165 ?

The proportion is 0.134
$=1-\operatorname{NORMDIST}(165,150,10, T R U E)+$
$\operatorname{NORMDIST}(135,150,10, T R U E)$

Question 11

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What proportion of the population scores below 92 or above 108 on an IQ test?

Question 11

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What proportion of the population scores below 92 or above 108 on an IQ test?

The proportion is 0.594 . 59.4% of people who take an IQ test score below 92 or above 108.
$=1-\operatorname{NORMDIST}(108,100,15, \operatorname{TRUE})+$
NORMDIST(92, 100, 15,TRUE)

Question 12

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . What proportion of the population scores below 450 or above 550 on the SAT?

Question 12

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . What proportion of the population scores below 450 or above 550 on the SAT?

The proportion is $0.617 .61 .7 \%$ of people who take the SAT score below 450 or above 550 .
$=1-\operatorname{NORMDIST}(550,500,100, T R U E)+$
NORMDIST(450,500, 100, TRUE)

Question 13

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . Find the probability that the mean of a sample of 50 is below 510 .

Question 13

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . Find the probability that the mean of a sample of 50 is below 510 .

The probability is 0.760 .
$=\operatorname{NORMDIST}(510,500,100 / S Q R T(50), T R U E)$

Question 14

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . Find the probability that the mean of a sample of 200 is below 498.

Question 14

SAT scores have a normal (bell curve) distribution with mean of 500 and standard deviation of 100 . Find the probability that the mean of a sample of 200 is below 498.

The probability is 0.389 .
$=\operatorname{NORMDIST}(498,500,100 / S Q R T(200), T R U E)$

Question 15

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What is the probability that a sample of 100 has a mean greater than 101 ?

Question 15

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What is the probability that a sample of 100 has a mean greater than 101 ?

The proportion is 0.252 .
$=1-\operatorname{NORMDIST}(101,100,15 / S Q R T(100), \operatorname{TRUE})$

Question 16

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What is the probability that a sample of 100 has a mean between 98 and 102?

Question 16

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What is the probability that a sample of 100 has a mean between 98 and 102?

The proportion is 0.818
$=\operatorname{NORMDIST}(102,100,15 / S Q R T(100), T R U E)-$ NORMDIST(98, 100, 15/SQRT(100), TRUE)

Question 17

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What is the $75^{t h}$ percentile of the distribution of means of samples of size 80 ?

Question 17

IQ scores have a normal (bell curve) distribution with mean of 100 and standard deviation of 15 . What is the $75^{t h}$ percentile of the distribution of means of samples of size 80 ?

The $75^{\text {th }}$ percentile is 101.13 .
$=\operatorname{NORMINV}(.75,100,15 / S Q R T(80), T R U E)$

Question 18

45% of people support a proposed law. Find the probability that fewer than 85 in a sample of 200 support the law.

Question 18

45% of people support a proposed law. Find the probability that fewer than 85 in a sample of 200 support the law.

The probability is 0.239 . The normal approximation is valid.
$=\operatorname{NORMDIST}(85, .45 * 200, S Q R T(.45 *(1-$
.45)/SQRT(200)), TRUE)

Question 19

55% of people support a proposed law. Find the probability that between 110 and 120 in a sample of 200 support the law.

Question 19

55% of people support a proposed law. Find the probability that between 110 and 120 in a sample of 200 support the law.

The probability is 0.422 . The normal approximation is valid.
$=\operatorname{NORMDIST}(120, .55 * 200, \operatorname{SQRT}(.55 *(1-$
.55)/SQRT(200)), TRUE) -NORMDIST(110,. 55 *
200, $S Q R T(.55 *(1-.55) / S Q R T(200)), T R U E)$

Question 20

85% of people wear seatbelts while driving. A remote camera photographs 500 cars as they pass beneath it, allowing determiniation of whether the driver is wearing a seat belt or not. Find the probability that between 410 and 420 of the drivers photographed are wearing seatbelts.

Question 20

85% of people wear seatbelts while driving. A remote camera photographs 500 cars as they pass beneath it, allowing determiniation of whether the driver is wearing a seat belt or not. Find the probability that between 410 and 420 of the drivers photographed are wearing seatbelts.

The probability is 0.235 . The normal approximation is valid.
$=\operatorname{NORMDIST}(410, .85 * 500, \operatorname{SQRT}(.85 *(1-$
.85)/SQRT(500)), TRUE) -NORMDIST(420, . 85 *
$500, S Q R T(.85 *(1-.85) / S Q R T(500)), T R U E)$

Question 21

SAT scores have a normal (bell curve) distribution standard deviation of 100 . A sample of 150 has a mean of 497.5. Find a 95% confidence interval for the mean of this population.

Question 21

SAT scores have a normal (bell curve) distribution standard deviation of 100 . A sample of 150 has a mean of 497.5 . Find a 95% confidence interval for the mean of this population.
type: sigma known
The interval is (481.5, 513.5)

Question 22

28% of mosquitoes in a certain county are believed to carry the HGE pathogen. Find the probability that between 50 and 60 of 235 mosquitoes removed from a trap test positive for HGE.

Question 22

28% of mosquitoes in a certain county are believed to carry the HGE pathogen. Find the probability that between 50 and 60 of 235 mosquitoes removed from a trap test positive for HGE.

The probability is 0.189 . The normal approximation is valid.

```
= NORMDIST(60,.28 * 235,SQRT(.28* (1-
.28)/SQRT(235)),TRUE) - NORMDIST(50,.28 *
235,SQRT(.28 * (1 - .28)/SQRT(235)),TRUE)
```


Question 23

A sample of 22 gears from a large production run has has a mean diameter of 76.1 mm with a standard deviation of 0.2 mm . Find a 95% confidence interval for the mean gear diameter of the production run assuming the gear diameter has a normal distribution.

Question 23

A sample of 22 gears from a large production run has has a mean diameter of 76.1 mm with a standard deviation of 0.2 mm . Find a 95% confidence interval for the mean gear diameter of the production run assuming the gear diameter has a normal distribution.
type: sigma unknown
The interval is $(76.01,76.19)$

Question 24

SAT scores have a normal (bell curve) distribution with a standard deviation of 100 . A sample of 50 has a mean of 502.5 . Find a 99% confidence interval for the mean of this population.

Question 24

SAT scores have a normal (bell curve) distribution with a standard deviation of 100 . A sample of 50 has a mean of 502.5 . Find a 99% confidence interval for the mean of this population.
type: sigma known
The interval is (466.1, 538.9)

Question 25

IQ scores have a normal (bell curve) distribution with a standard deviation of 15 . A sample of 125 has a mean of 103.4. Find a 95% confidence interval for the mean of this population.

Question 25

IQ scores have a normal (bell curve) distribution with a standard deviation of 15 . A sample of 125 has a mean of 103.4. Find a 95% confidence interval for the mean of this population.
type: sigma known
The interval is $(100.8,106.0)$

Question 26

A sample of 44 walleye pike from a lake run has has a mean weight of 7.2 kg with a sample standard deviation of 1.3 kg . Find a 95% confidence interval for the mean weight of the population.

Question 26

A sample of 44 walleye pike from a lake run has has a mean weight of 7.2 kg with a sample standard deviation of 1.3 kg . Find a 95% confidence interval for the mean weight of the population.
type: sigma unknown
The interval is (6.8, 7.6)

Question 27

A sample of 47 times for emergency medical response had a mean time of 4.2 minutes with a sample standard deviation of 1.3 minutes. Find a 99% confidence interval for the population mean response time.

Question 27

A sample of 47 times for emergency medical response had a mean time of 4.2 minutes with a sample standard deviation of 1.3 minutes. Find a 99% confidence interval for the population mean response time.
type: sigma unknown
The interval is $(3.69,4.71)$

Question 28

A sample of 35 melting temperatures for pyrometric cones has a mean of 897.3 degrees with a standard deviation of 2.1 degrees. Find a 95% confidence interval for the population mean response time.

Question 28

A sample of 35 melting temperatures for pyrometric cones has a mean of 897.3 degrees with a standard deviation of 2.1 degrees. Find a 95% confidence interval for the population mean response time.
type: sigma unknown
The interval is ($896.58,898.02$)

Question 29

Animal shelter records indicate that in 27 of 85 feline deaths the cause was leukemia. Find a 95% confidence interval for the proportion of feline deaths due to leukemia.

Question 29

Animal shelter records indicate that in 27 of 85 feline deaths the cause was leukemia. Find a 95% confidence interval for the proportion of feline deaths due to leukemia.
type: proportion
(0.22, 0.42)

Question 30

A sample of 75 automobiles made by a certain manufacture that were sold 15 years ago reveals that 62 are still in use. Find a 95% confidence interval for the proportion of 15 year old cars of this make that are still in use.

Question 30

A sample of 75 automobiles made by a certain manufacture that were sold 15 years ago reveals that 62 are still in use. Find a 95% confidence interval for the proportion of 15 year old cars of this make that are still in use.
type: proportion
(0.74, 0.91)

