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Confidence Intervals
In our prior work with confidence intervals, we assumed the
population standard deviation σ was known.

Usually σ is known in one of two situations:

We are dealing with a standardized measure such as
IQ scores or SAT scores
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Confidence Intervals
In our prior work with confidence intervals, we assumed the
population standard deviation σ was known.

Usually σ is known in one of two situations:

We are dealing with a standardized measure such as
IQ scores or SAT scores

A very reliable estimate of σ is available from some
source such as a census of the population

Most of the time, neither of these is true. What should be
done when σ is not known?

When the assumption that σ is known is unreasonable, we
can use the sample standard deviation s to estimate σ.
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Confidence Intervals
Unfortunately, we cannot simply substitute s everywhere we
find σ in our confidence interval formulas.

The statistic
x − µ

σ/
√

n

will have a normal or bell curve distribution if the underlying
population has a normal distribution
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Confidence Intervals
Unfortunately, we cannot simply substitute s everywhere we
find σ in our confidence interval formulas.

The statistic
x − µ

σ/
√

n

will have a normal or bell curve distribution if the underlying
population has a normal distribution

If the sample size is large, say 30 or more, the central limit
theorem states that this statistic will have an approximately
normal distribution.
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Confidence Intervals
However, the statistic
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n

does not have a normal distribution.
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Confidence Intervals
However, the statistic

x − µ

s/
√

n

does not have a normal distribution.

The correct distribution was discovered in 1904 by William
Gosset, an employee of the Guiness Brewery in Dublin.

Forbidden to publish by company regulations, Gosset
published his result under the pseudonym student

As a result, the distribution became known as Student’s
t-distribution
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The t Distribution
Actually the student’s t-distribution (also known simply as
the t distribution) is quite similiar to the normal distribution.
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text, it is labeled "z" and matches the normal distribution.
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The t Distribution
Actually the student’s t-distribution (also known simply as
the t distribution) is quite similiar to the normal distribution.

In fact, they become indistinguishable as the sample size n
becomes large.

If you look at the last row of the t distribution table in the
text, it is labeled "z" and matches the normal distribution.

In some versions of this table, the last row is labeled ∞
indicating that this is the limit as the sample size becomes
large without bound.

When n is small, say < 30, the t distribution has slightly
higher dispersion than the normal distribution.
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Computing t Values
As with normal or z values, we can use a spreadsheet to
compute values of the t distribution corresponding to a
given α value.
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Computing t Values
As with normal or z values, we can use a spreadsheet to
compute values of the t distribution corresponding to a
given α value.

The appropriate spreadsheet function is called TINV , and
the value we are usually interested in is:

tα/2 = TINV (α, n − 1)

where 1 − α is the level of confidence we want an n is the
sample size.
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Computing t Values

tα/2 = TINV (α, n − 1)

Notice that the second argument to TINV is n − 1, one less
than the sample size.
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Computing t Values

tα/2 = TINV (α, n − 1)

Notice that the second argument to TINV is n − 1, one less
than the sample size.

Notice also that we do not divide α by two as we did with
the NORMSINV function.
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Computing t Values

tα/2 = TINV (α, n − 1)

Notice that the second argument to TINV is n − 1, one less
than the sample size.

Notice also that we do not divide α by two as we did with
the NORMSINV function.

There is no theoretical reason for this, the spreadsheet
designers just implemented the TINV function differently
from NORMSINV
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Confidence Intervals
The lower bound of the confidence interval when σ is
unknown is:

x − tα/2 ·
s
√

n
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Confidence Intervals
The lower bound of the confidence interval when σ is
unknown is:

x − tα/2 ·
s
√

n

The upper bound of the confidence interval is:

x + tα/2 ·
s
√

n

As before the constant tα/2 is determined by the level of
confidence 1 − α
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Confidence Intervals
The lower bound in terms of spreadsheet functions is

x − TINV (α, n − 1) ·
s
√

n
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Confidence Intervals
The lower bound in terms of spreadsheet functions is

x − TINV (α, n − 1) ·
s
√

n

The upper bound of the confidence interval is:

x + TINV (α, n − 1) ·
s
√

n
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Confidence Intervals for Proportions
One of the most common applications of confidence
intervals involve estimates of population proportions
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Recall that we can often approximate a binomial random
variable with a normal distribution.
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Confidence Intervals for Proportions
One of the most common applications of confidence
intervals involve estimates of population proportions

Recall that we can often approximate a binomial random
variable with a normal distribution.

Using the normal approximation to the binomial, we can
modify the results for confidence intervals for means to
obtain confidence intervals for the population proportion.

These results assume np̂(1 − p̂) ≥ 10 and the sample
represents no more than 5% of the population.
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Confidence Intervals for Proportions
The point estimate p̂ of a population proportion p,

p̂ =
x

n

will have a normal or bell curve distribution with

µp̂ = p and σp̂ =

√

p(1 − p)

n

provided np(1 − p) ≥ 10.
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Confidence Intervals for Proportions
The lower bound of the confidence interval for a proportion
p is:

p̂ − zα/2 ·

√

p̂(1 − p̂)

n
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Confidence Intervals for Proportions
The lower bound of the confidence interval for a proportion
p is:

p̂ − zα/2 ·

√

p̂(1 − p̂)

n

The upper bound of the confidence interval is:

p̂ + zα/2 ·

√

p̂(1 − p̂)

n
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Margin of Error
The margin of error associated with a 1 − α level
confidence interval for a proportion p is

E = zα/2 ·

√

p̂(1 − p̂)

n
= NORMSINV (1 − α/2) ·

√

p̂(1 − p̂)

n
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Margin of Error
The margin of error associated with a 1 − α level
confidence interval for a proportion p is

E = zα/2 ·

√

p̂(1 − p̂)

n
= NORMSINV (1 − α/2) ·

√

p̂(1 − p̂)

n

As before the margin of error is 1/2 the width of the
confidence interval for p
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Sample Size
To get a specified margin of error E, the required sample
size is:

n = p̂(1 − p̂)
(zα/2

E

)2
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Sample Size
To get a specified margin of error E, the required sample
size is:

n = p̂(1 − p̂)
(zα/2

E

)2

In terms of a spreadsheet formula, the sample size is:

n = p̂(1 − p̂)

(

NORMSINV (1 − α/2)

E
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Sample Size
To get a specified margin of error E, the required sample
size is:

n = p̂(1 − p̂)
(zα/2

E

)2

In terms of a spreadsheet formula, the sample size is:

n = p̂(1 − p̂)

(

NORMSINV (1 − α/2)

E

)2

In this formula, p̂ represents an estimate of p from some
other source, not from the sample which is still being
planned.
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Sample Size
Example: We want to estimate the proportion of students
who graduate from high school in a certain state.

What size sample is required if the proportion is
approximately .75 and the we want the estimate to be within
3% of p with 95% confidence?
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Sample Size
Example: We want to estimate the proportion of students
who graduate from high school in a certain state.

What size sample is required if the proportion is
approximately .75 and the we want the estimate to be within
3% of p with 95% confidence?

Set p̂ = .75 and α = .05. Then

n = (.75)(.25)

(

NORMSINV (0.975)

0.03

)2

= 800

Confidence Intervals – p. 15/16



Sample Size
It should be pointed out that the maximum required sample
size occurs when p̂ = 1/2.

So, absent a reliable extimate of p, one can always assume
the worst case of p = 0.5.
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Sample Size
It should be pointed out that the maximum required sample
size occurs when p̂ = 1/2.

So, absent a reliable extimate of p, one can always assume
the worst case of p = 0.5.

The down side of this approach is that it may produce a
much larger sample size than actually required.
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