Sullivan Section 7.2

Gene Quinn

The Standard Normal Distribution

The bell-shaped curve of the normal distribution is completely characterized by two values known as parameters:

- The mean μ

The Standard Normal Distribution

The bell-shaped curve of the normal distribution is completely characterized by two values known as parameters:

- The mean μ
- The standard deviation σ

The Standard Normal Distribution

An important special case of the normal distribution occurs when:

- The mean $\mu=0$
- The standard deviation $\sigma=1$

The Standard Normal Distribution

An important special case of the normal distribution occurs when:

- The mean $\mu=0$
- The standard deviation $\sigma=1$

A normal distribution with $\mu=0$ and $\sigma=1$ is called a standard normal distribution.

The Standard Normal Distribution

An important special case of the normal distribution occurs when:

- The mean $\mu=0$
- The standard deviation $\sigma=1$

A normal distribution with $\mu=0$ and $\sigma=1$ is called a standard normal distribution.

Because the mean and standard deviation are specified, simply knowing that a random variable has a standard normal distribution tells you everything about that variable.

The Standard Normal Distribution

The curve associated with the normal probability density has the following properties:

- It is symmetric about its mean $\mu=0$

The Standard Normal Distribution

The curve associated with the normal probability density has the following properties:

- It is symmetric about its mean $\mu=0$
- Its highest point occurs at $x=\mu=0$

The Standard Normal Distribution

The curve associated with the normal probability density has the following properties:

- It is symmetric about its mean $\mu=0$
- Its highest point occurs at $x=\mu=0$
- The area under the curve is 1

The Standard Normal Distribution

The curve associated with the normal probability density has the following properties:

- It is symmetric about its mean $\mu=0$
- Its highest point occurs at $x=\mu=0$
- The area under the curve is 1
- The area under the curve to the right of $\mu=0$ is $1 / 2$.

The Standard Normal Distribution

The curve associated with the normal probability density has the following properties:

- It is symmetric about its mean $\mu=0$
- Its highest point occurs at $x=\mu=0$
- The area under the curve is 1
- The area under the curve to the right of $\mu=0$ is $1 / 2$.
- The area under the curve to the left of $\mu=0$ is $1 / 2$.

The Standard Normal Distribution

The curve associated with the normal probability density has the following properties:

- It is symmetric about its mean $\mu=0$
- Its highest point occurs at $x=\mu=0$
- The area under the curve is 1
- The area under the curve to the right of $\mu=0$ is $1 / 2$.
- The area under the curve to the left of $\mu=0$ is $1 / 2$.
- For positive values of x, as x increases the curve approaches zero.

The Standard Normal Distribution

The curve associated with the normal probability density has the following properties:

- It is symmetric about its mean $\mu=0$
- Its highest point occurs at $x=\mu=0$
- The area under the curve is 1
- The area under the curve to the right of $\mu=0$ is $1 / 2$.
- The area under the curve to the left of $\mu=0$ is $1 / 2$.
- For positive values of x, as x increases the curve approaches zero.
- For negative values of x, as x moves to the left, the curve approaches zero.

The Standard Normal Distribution

The curve associated with the normal probability density has the following properties:

- It is symmetric about its mean $\mu=0$
- Its highest point occurs at $x=\mu=0$
- The area under the curve is 1
- The area under the curve to the right of $\mu=0$ is $1 / 2$.
- The area under the curve to the left of $\mu=0$ is $1 / 2$.
- For positive values of x, as x increases the curve approaches zero.
- For negative values of x, as x moves to the left, the curve approaches zero.
- The Empirical rule applies; The standard deviation is $\sigma=1$

Finding Areas Under the Bell Curve

Areas under the bell curve represent probabilities, or equivalently, proportions of the population that fall within a certain range.

Finding Areas Under the Bell Curve

Areas under the bell curve represent probabilities, or equivalently, proportions of the population that fall within a certain range.

For example, we know that the area to the left of zero under the standard normal curve is $1 / 2$.

Finding Areas Under the Bell Curve

Areas under the bell curve represent probabilities, or equivalently, proportions of the population that fall within a certain range.

For example, we know that the area to the left of zero under the standard normal curve is $1 / 2$.

This means that 50% of the standard normal population falls below the mean, zero.

Finding Areas Under the Bell Curve

Often we are interested in finding the area to the left of an arbitrary value.

Finding Areas Under the Bell Curve

Often we are interested in finding the area to the left of an arbitrary value.

The bell curve does not lend itself readily to this type of computation.

Finding Areas Under the Bell Curve

Often we are interested in finding the area to the left of an arbitrary value.

The bell curve does not lend itself readily to this type of computation.

Historically, this meant that values had to be obtained from tables.

Finding Areas Under the Bell Curve

Often we are interested in finding the area to the left of an arbitrary value.

The bell curve does not lend itself readily to this type of computation.

Historically, this meant that values had to be obtained from tables.

With the advent of computers, the complicated numerical procedures involved can be carried out quickly.

Areas to the Left of z

The spreadsheet function NORMSDIST(z) returns the area under the standard normal curve to the left of z.

Areas to the Left of z

The spreadsheet function NORMSDIST(z) returns the area under the standard normal curve to the left of z.

For example, to find the area to the left of 1 , enter the formula

$$
=N O R M S D I S T(1)
$$

Areas to the Left of z

The spreadsheet function NORMSDIST(z) returns the area under the standard normal curve to the left of z.

For example, to find the area to the left of 1 , enter the formula

$$
=\operatorname{NORMSDIST}(1)
$$

The result is 0.841344 , which represents the area under the bell curve to the left of 1 .

Areas to the Left of z

Example: Find the area under the bell curve to the left of -1

Areas to the Left of z

Example: Find the area under the bell curve to the left of -1
Solution: enter the formula

$$
=\operatorname{NORMSDIST}(-1)
$$

The result is 0.1586 , which represents the area under the bell curve to the left of -1 .

Areas to the Left of z

Example: Find the area under the standard normal bell curve to the left of zero (we know the answer: 0.5)

Areas to the Left of z

Example: Find the area under the standard normal bell curve to the left of zero (we know the answer: 0.5)

Solution: enter the formula

$$
=\operatorname{NORMSDIST}(0)
$$

The result is 0.5 , which represents the area under the bell curve to the left of 0 .

Areas to the Right of z

The spreadsheet function NORMSDIST(z) returns the area under the standard normal curve to the left of z.

Areas to the Right of z

The spreadsheet function NORMSDIST(z) returns the area under the standard normal curve to the left of z.

We know the total area under the curve is 1 . This means that the area to the right of z is:

$$
=1-\operatorname{NORMSDIST}(z)
$$

Areas to the Right of z

The spreadsheet function NORMSDIST(z) returns the area under the standard normal curve to the left of z.

We know the total area under the curve is 1 . This means that the area to the right of z is:

$$
=1-\operatorname{NORMSDIST}(z)
$$

For example, to find the area to the right of 1 , enter the formula

$$
=1-\operatorname{NORMSDIST}(1)
$$

Areas to the Right of z

The spreadsheet function NORMSDIST(z) returns the area under the standard normal curve to the left of z.

We know the total area under the curve is 1 . This means that the area to the right of z is:

$$
=1-\operatorname{NORMSDIST}(z)
$$

For example, to find the area to the right of 1 , enter the formula

$$
=1-\operatorname{NORMSDIST}(1)
$$

The result is 0.1586 (the same as the area to the left of -1).

Areas to the Right of z

Example: Find the area under the standard normal bell curve to the right of of -1

Areas to the Right of z

Example: Find the area under the standard normal bell curve to the right of of -1

Solution: enter the formula

$$
=1-\operatorname{NORMSDIST}(-1)
$$

The result is 0.8413 , which represents the area under the bell curve to the right of -1 .

Areas Between Two Values

Often we need to find the area between two values z_{1} and z_{2}.

Areas Between Two Values

Often we need to find the area between two values z_{1} and z_{2}.

In this case, we have to use the NORMSDIST function twice.

Areas Between Two Values

Often we need to find the area between two values z_{1} and z_{2}.

In this case, we have to use the NORMSDIST function twice.

For the area between z_{1} and z_{2}, enter the formula

$$
=\operatorname{NORMSDIST}\left(z_{2}\right)-\operatorname{NORMSDIST}\left(z_{1}\right)
$$

Areas Between Two Values

Example: Find the area under the standard normal bell curve between -1 and 1

Areas Between Two Values

Example: Find the area under the standard normal bell curve between -1 and 1

Solution: enter the formula

$$
=\operatorname{NORMSDIST}(1)-\operatorname{NORMSDIST}(-1)
$$

The result is 0.6826 , which agrees with the empirical rule.

Areas Between Two Values

Example: Find the area under the standard normal bell curve between -2 and 2

Areas Between Two Values

Example: Find the area under the standard normal bell curve between -2 and 2

Solution: enter the formula

$$
=\operatorname{NORMSDIST}(2)-\operatorname{NORMSDIST}(-2)
$$

The result is 0.9545 , which also agrees with the empirical rule.

Areas Between Two Values

The values do not have to be equally spaced around the mean.

Example: Find the area under the standard normal bell curve between -1 and 3

Areas Between Two Values

The values do not have to be equally spaced around the mean.

Example: Find the area under the standard normal bell curve between -1 and 3

Solution: enter the formula

$$
=\operatorname{NORMSDIST}(3)-\operatorname{NORMSDIST}(-1)
$$

The result is 0.83999 , which is the area between -1 and 3 .

Areas Outside an Interval

Finally, it is possible to find the area outside the interval between two values.

For the area outside the interval from z_{1} to z_{2}, use the formula

$$
=\operatorname{NORMSDIST}\left(z_{1}\right)+1-\operatorname{NORMSDIST}\left(z_{2}\right)
$$

Areas Outside an Interval

Finally, it is possible to find the area outside the interval between two values.

For the area outside the interval from z_{1} to z_{2}, use the formula

$$
=\operatorname{NORMSDIST}\left(z_{1}\right)+1-\operatorname{NORMSDIST}\left(z_{2}\right)
$$

The result sum of the areas to the left of z_{1} and to the right of z_{2}.

Areas Outside an Interval

Example: Find the area under the standard normal bell curve to the left of -1 and the right of 1

Areas Outside an Interval

Example: Find the area under the standard normal bell curve to the left of -1 and the right of 1

Solution: enter the formula

$$
=\operatorname{NORMSDIST}(-1)+1-\operatorname{NORMSDIST}(1)
$$

The result is 0.3173 , which agrees with the emprical rule.

