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Binomial Probability Experiments
A binomial probability experiment is an experiment that
meets the following criteria:

The experiment consists of a fixed number n of
repetitions called trials .
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Binomial Probability Experiments
A binomial probability experiment is an experiment that
meets the following criteria:

The experiment consists of a fixed number n of
repetitions called trials .

Each trial has only two possible outcomes, which are
mutually exclusive.
The two outcomes are usually referred to as success
and failure .

Each of the trials is independent of the others.
That is, the outcome of one trial has no effect on the
other trials.

The probability of success is the same for each trial
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Binomial Probability Experiments
When these conditions are met, the number of successes is
denoted by X.

X is said to be a random variable having the binomial
distribution .
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Binomial Probability Experiments
When these conditions are met, the number of successes is
denoted by X.

X is said to be a random variable having the binomial
distribution .

If the probability of success is 1/2, the binomial experiment
is equivalent to a series of coin tosses.
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Binomial Probability Experiments
The following notation is used for the binomial probability
distribution:

The experiment consists of n independent trials.
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Binomial Probability Experiments
The following notation is used for the binomial probability
distribution:

The experiment consists of n independent trials.

The probability of success on each trial is denoted by p.

The probability of failure on each trial is 1 − p.

The total number of successes in n independent trials is
denoted by X.
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Computing Binomial Probabilities
The following structure known as Pascal’s triangle is
useful for computing binomial probabilities when n is fairly
small (n < 10).

1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

n = 6 1 6 15 20 15 6 1

n = 7 1 7 21 35 35 21 7 1
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Computing Binomial Probabilities

1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

n = 6 1 6 15 20 15 6 1

The entries in successive rows of Pascal’s triangle are the
sum of the two closest entries in the previous row.
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Computing Binomial Probabilities
If you think of the outcome of n trials with two outcomes,
success or failure, the entire experiment can be
summarized as a sequence of S′s and F ′s with n entries.
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Computing Binomial Probabilities
If you think of the outcome of n trials with two outcomes,
success or failure, the entire experiment can be
summarized as a sequence of S′s and F ′s with n entries.

In the row of Pascal’s triangle corresponding to n trials,
there are n + 1 entries.

The sum of the entries in the row corresponding to n trials
is always 2n.
This represents the number of possible sequences of n
letters where each one has to be either S or F .
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Computing Binomial Probabilities
There are always n + 1 entries in the row corresponding to n
trials.

The first entry is the number of sequences with no S′s
and n F ′s (the first entry is always 1)
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Computing Binomial Probabilities
There are always n + 1 entries in the row corresponding to n
trials.

The first entry is the number of sequences with no S′s
and n F ′s (the first entry is always 1)

The second entry is the number of sequences having 1
S and n − 1 F ′s (the second entry is always n)
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Computing Binomial Probabilities
There are always n + 1 entries in the row corresponding to n
trials.

The first entry is the number of sequences with no S′s
and n F ′s (the first entry is always 1)

The second entry is the number of sequences having 1
S and n − 1 F ′s (the second entry is always n)

The third entry is the number of sequences having 2 S′s
and n − 2 F ′s
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Computing Binomial Probabilities
There are always n + 1 entries in the row corresponding to n
trials.

The first entry is the number of sequences with no S′s
and n F ′s (the first entry is always 1)

The second entry is the number of sequences having 1
S and n − 1 F ′s (the second entry is always n)

The third entry is the number of sequences having 2 S′s
and n − 2 F ′s

The fourth entry is the number of sequences having 3
S′s and n − 3 F ′s
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Computing Binomial Probabilities
The next to last entry is the number of sequences
having n − 1 S′s and 1 F (the next to last entry is always
n)
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Computing Binomial Probabilities
The next to last entry is the number of sequences
having n − 1 S′s and 1 F (the next to last entry is always
n)

The last entry is the number of sequences having n S′s
and 0 F ′s (the last entry is always 1)
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Binomial Probabilities when p = 0.5

The simplest case occurs when success and failure are
equally likely.

If we identify "heads" with "success", the experiment
corrsponds tossing a fair coin n times.
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Binomial Probabilities when p = 0.5

The simplest case occurs when success and failure are
equally likely.

If we identify "heads" with "success", the experiment
corrsponds tossing a fair coin n times.

In this case, the probability of obtaining 0, 1, 2, etc. heads in
n tosses is the corresponding entry in Pascal’s table,
divided by the sum of the row (2n).
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Binomial Probabilities when p 6= 0.5

When success and failure are not equally likely, we need to
use the following modified procedure to calculate the
probabilities.

The number of trials n determines which row of Pascal’s
triangle is used.
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Binomial Probabilities when p 6= 0.5

Suppose the probability of success on each trial is p.

We compute the probabilities associated with each value of
X,
where X represents the number of successes in n trials.

The first entry in the row is multiplied by pn.
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Suppose the probability of success on each trial is p.

We compute the probabilities associated with each value of
X,
where X represents the number of successes in n trials.

The first entry in the row is multiplied by pn.

The second entry in the row is multiplied by pn−1(1− p).
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Binomial Probabilities when p 6= 0.5

Suppose the probability of success on each trial is p.

We compute the probabilities associated with each value of
X,
where X represents the number of successes in n trials.

The first entry in the row is multiplied by pn.

The second entry in the row is multiplied by pn−1(1 − p).

The third entry in the row is multiplied by pn−2(1 − p)2.
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Binomial Probabilities when p 6= 0.5

Suppose the probability of success on each trial is p.

We compute the probabilities associated with each value of
X,
where X represents the number of successes in n trials.

The first entry in the row is multiplied by pn.

The second entry in the row is multiplied by pn−1(1 − p).

The third entry in the row is multiplied by pn−2(1 − p)2.

Continue in this fashion. The n + 1st entry is multiplied
by (1 − p)n
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Computing Binomial Probabilities
An alternative method of computing binomial probabilities
makes use of mathematical entities called combinations .
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Computing Binomial Probabilities
An alternative method of computing binomial probabilities
makes use of mathematical entities called combinations .

First, we need to define another mathematical entity called
a factorial , which will be designated by a number followed
by an exclamation point (!).

We define 1! to be 1.

We define 2! to be 2 · 1.
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Computing Binomial Probabilities
An alternative method of computing binomial probabilities
makes use of mathematical entities called combinations .

First, we need to define another mathematical entity called
a factorial , which will be designated by a number followed
by an exclamation point (!).

We define 1! to be 1.
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Computing Binomial Probabilities
An alternative method of computing binomial probabilities
makes use of mathematical entities called combinations .

First, we need to define another mathematical entity called
a factorial , which will be designated by a number followed
by an exclamation point (!).

We define 1! to be 1.

We define 2! to be 2 · 1.

We define 3! to be 3 · 2 · 1.

We define 4! to be 4 · 3 · 2 · 1.

We define 5! to be 5 · 4 · 3 · 2 · 1.
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Computing Binomial Probabilities
An alternative method of computing binomial probabilities
makes use of mathematical entities called combinations .

First, we need to define another mathematical entity called
a factorial , which will be designated by a number followed
by an exclamation point (!).

We define 1! to be 1.

We define 2! to be 2 · 1.

We define 3! to be 3 · 2 · 1.

We define 4! to be 4 · 3 · 2 · 1.

We define 5! to be 5 · 4 · 3 · 2 · 1.

For convenience, we define 0! to be 1.
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Computing Binomial Probabilities
Definition: The number of combinations of n objects
taken r at a time is denoted by either

nCr or
(

n

r

)

and is defined to be:
n!

r!(n − r)!
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Computing Binomial Probabilities
Example: Find the number of combinations of 4 objects
taken 2 at a time.

That is, find

4C2 or
(

4

2

)

Sullivan Section 6.2 – p. 15/23



Computing Binomial Probabilities
Example: Find the number of combinations of 4 objects
taken 2 at a time.

That is, find

4C2 or
(

4

2

)

By definition,
(

4

2

)

=
4!

2!(4 − 2)!
=

4 · 3 · 2 · 1
(2 · 1) · (2 · 1)

=
24

(2)(2)
= 6
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Computing Binomial Probabilities in General
The general formula for computing the probability of k
successes in a binomial experiment with n trials when the
probability of success on each trial is p is:

P (k successes) =

(

n

k

)

pk(1 − p)n−k, k = 0, 1, . . . , n
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Computing Binomial Probabilities in General
The general formula for computing the probability of k
successes in a binomial experiment with n trials when the
probability of success on each trial is p is:

P (k successes) =

(

n

k

)

pk(1 − p)n−k, k = 0, 1, . . . , n

or, equivalently,

P (k successes) =n Ckp
k(1 − p)n−k, k = 0, 1, . . . , n
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Mean of a Binomial Random Variable
Suppose the criteria for a binomial probability experiment
are met.

The possible outcomes of the experiment, and the
probabilities associated with each outcome are completely
determined by two numbers:

The number of trials in the experiment, denoted by n
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Mean of a Binomial Random Variable
Suppose the criteria for a binomial probability experiment
are met.

The possible outcomes of the experiment, and the
probabilities associated with each outcome are completely
determined by two numbers:

The number of trials in the experiment, denoted by n

The probability of success on each trial, denoted by p
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Mean of a Binomial Random Variable
Example: Suppose the criteria for a binomial probability
experiment are met, and we are told that the experiment
consists of 6 trials, each with probability of success equal to
0.6.
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Mean of a Binomial Random Variable
Example: Suppose the criteria for a binomial probability
experiment are met, and we are told that the experiment
consists of 6 trials, each with probability of success equal to
0.6.

Immediately, we know that the random variable X defined
to be the number of successes obtained in the experiment
must have one of the following values:

0, 1, 2, 3, 4, 5, 6
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Mean of a Binomial Random Variable
Example: Suppose the criteria for a binomial probability
experiment are met, and we are told that the experiment
consists of 6 trials, each with probability of success equal to
0.6.

Immediately, we know that the random variable X defined
to be the number of successes obtained in the experiment
must have one of the following values:

0, 1, 2, 3, 4, 5, 6

Furthermore, we know that for k = 0, 1, . . . , 6, the probability
that exactly k successes are obtained is given by the
formula:

P (X = k) = 6Ck · pk(1 − p)n−k
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Mean of a Binomial Random Variable
In particular, we know that:

The probability of 0 successes is 6C0 · (0.6)0(0.4)6
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Mean of a Binomial Random Variable
In particular, we know that:

The probability of 0 successes is 6C0 · (0.6)0(0.4)6

The probability of 1 success is 6C1 · (0.6)1(0.4)5
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The probability of 1 success is 6C1 · (0.6)1(0.4)5
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Mean of a Binomial Random Variable
In particular, we know that:

The probability of 0 successes is 6C0 · (0.6)0(0.4)6
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Mean of a Binomial Random Variable
In particular, we know that:

The probability of 0 successes is 6C0 · (0.6)0(0.4)6

The probability of 1 success is 6C1 · (0.6)1(0.4)5

The probability of 2 successes is 6C2 · (0.6)2(0.4)4

The probability of 3 successes is 6C3 · (0.6)3(0.4)3

The probability of 4 successes is 6C4 · (0.6)4(0.4)2

The probability of 5 successes is 6C5 · (0.6)5(0.4)1
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Mean of a Binomial Random Variable
In particular, we know that:

The probability of 0 successes is 6C0 · (0.6)0(0.4)6

The probability of 1 success is 6C1 · (0.6)1(0.4)5

The probability of 2 successes is 6C2 · (0.6)2(0.4)4

The probability of 3 successes is 6C3 · (0.6)3(0.4)3

The probability of 4 successes is 6C4 · (0.6)4(0.4)2

The probability of 5 successes is 6C5 · (0.6)5(0.4)1

The probability of 6 successes is 6C6 · (0.6)6(0.4)0
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Means and Standard Deviations
If we think of a large collection of binomial experiments
producing a population of outcomes, the population mean
µX will be given by the formula:

µX = np
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Means and Standard Deviations
If we think of a large collection of binomial experiments
producing a population of outcomes, the population mean
µX will be given by the formula:

µX = np

The population standard deviation σX is given by the
formula:

σX =
√

n · p · (1 − p)
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Means and Standard Deviations
Example: If X represents the number of successes in 100
trials in a binomial experiment with probability of success
equal to 0.6, what is the mean µX and standard deviation
σX of X?

Sullivan Section 6.2 – p. 21/23



Means and Standard Deviations
Example: If X represents the number of successes in 100
trials in a binomial experiment with probability of success
equal to 0.6, what is the mean µX and standard deviation
σX of X?

The mean µX is given by

µX = n · p = 100 · 0.6 = 60
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Means and Standard Deviations
Example: If X represents the number of successes in 100
trials in a binomial experiment with probability of success
equal to 0.6, what is the mean µX and standard deviation
σX of X?

The mean µX is given by

µX = n · p = 100 · 0.6 = 60

The standard deviation σX is given by

σX =
√

n · p · (1 − p) =
√

100 · 0.6 · 0.4 = 4.90
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Means, Standard Deviations, and the Empirical
One of the properties of the binomial probability distribution
is that the distribution is bell shaped when n is reasonably
large.
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Means, Standard Deviations, and the Empirical
One of the properties of the binomial probability distribution
is that the distribution is bell shaped when n is reasonably
large.

How large is a "reasonably large" value of n? It depends on
p.

A commonly used rule of thumb states that the binomial
distribution will be approximately bell shaped provided that

n ≥ 10

p · (1 − p)
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Means, Standard Deviations, and the Empirical
Earlier we found that for a binomial experiment with 100
trials each having a probability of 0.6 of success, the mean
and standard deviation were:

µX = 60 and σX =
√

100 · 0.6 · 0.4 = 4.90
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Means, Standard Deviations, and the Empirical
Earlier we found that for a binomial experiment with 100
trials each having a probability of 0.6 of success, the mean
and standard deviation were:

µX = 60 and σX =
√

100 · 0.6 · 0.4 = 4.90

n = 100 is more than adequate to satisfy the rule of thumb
stating that n should be greater than or equal to
10/(p · (1 − p)), so the empirical rule tells us that:

approximately 68% of the time X will fall in the range
55.1 to 64.9

approximately 95% of the time X will fall in the range
50.2 to 69.8
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