
Linear Regression
Linear regression is a statistical technique often used to
predict one variable from another.
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Linear Regression
Linear regression is a statistical technique often used to
predict one variable from another.

Usually the basis for this is a linear association between
two variables.

Usually this association is assumed to have the following
form:

y = mx + b + e

x is the predictor variable

y is the dependent or predicted variable

m is the slope of the regression line

b is the intercept of the regression

e has a bell curve distribution with mean zero
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Linear Regression
The correlation coefficient r is a measure of linear
assiciation between two variables.
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Linear Regression
The correlation coefficient r is a measure of linear
assiciation between two variables.

An r value of 1 or −1 indicates a perfect linear relationship,
y = mx + b

An r value of 0 indicates no linear relationship.

This is equivalent to saying that the slope m is zero.

Nonlinear Regression – p. 2/19



Linear Regression
The slope m, correlation coefficient r, and the standard
deviations SDx and SDy are related by:

m =
r · SDy

SDx
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Linear Regression
The slope m, correlation coefficient r, and the standard
deviations SDx and SDy are related by:

m =
r · SDy

SDx

Notice that m is necessarily zero if r is zero:

m =
0 · SDy

SDx

so
m = 0
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Linear Regression
The slope m, intercept b, and the means x, y are related by:

b = y − m · x
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Linear Regression
The slope m, intercept b, and the means x, y are related by:

b = y − m · x

Note that if the slope is zero, the intercept is y

b = y − 0 · x

so
b = y
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Linear Regression
The slope m, intercept b, and the means x, y are related by:
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Linear Regression
The slope m, intercept b, and the means x, y are related by:

b = y − m · x

Note that if the slope is zero, the intercept is y

b = y − 0 · x

so
b = y
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Linear Regression
The RMS error s is a measure of the distance from the
regression line.
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Linear Regression
The RMS error s is a measure of the distance from the
regression line.

The term e in the usual linear model

y = mx + b + e

is assumed to have a bell curve distribution with mean zero.

The standard deviation of this bell curve is the RMS error, s.

Nonlinear Regression – p. 6/19



Linear Regression
The RMS error has characteristics similar to the standard
deviation for a bell curve.
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Linear Regression
The RMS error has characteristics similar to the standard
deviation for a bell curve.

If we take a scatter plot and draw the regression line on it,

68% of the observations will fall in a band of width s on
either side of the regression line.
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Linear Regression
The RMS error has characteristics similar to the standard
deviation for a bell curve.

If we take a scatter plot and draw the regression line on it,

68% of the observations will fall in a band of width s on
either side of the regression line.

About 95% will fall in a band of with 2s on either side of the
regression line.
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Linear Regression
The RMS error is given by the formula:

s =
√

1 − r2
· SDy

where r is the correlation coefficient.

Nonlinear Regression – p. 8/19



Linear Regression
The RMS error is given by the formula:

s =
√

1 − r2
· SDy

where r is the correlation coefficient.

The closer r is to −1 or 1, the smaller the RMS error
becomes.
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Linear Regression
The square of the correlation coefficient r is used so often it
is given a name.
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Linear Regression
The square of the correlation coefficient r is used so often it
is given a name.

Definition: The coefficient of determination , denoted by
R2, is the square of the correlation coefficient r.
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Linear Regression
The square of the correlation coefficient r is used so often it
is given a name.

Definition: The coefficient of determination , denoted by
R2, is the square of the correlation coefficient r.

R2 = r2

The coefficient of determination R2 can be interpreted as
the proportion of the dispersion of y that is explained by the
regression line.
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Linear Regression
Most spreadsheets have a function called CORREL that will
calculate a correlation coefficient r
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Linear Regression
Most spreadsheets have a function called CORREL that will
calculate a correlation coefficient r

For example, if there are 40 pairs of x and y values in
columns A and B,

=CORREL(A1:A40,B1:B40)

will compute the correlation coefficient r.
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Linear Regression
Most spreadsheets have a function called CORREL that will
calculate a correlation coefficient r

For example, if there are 40 pairs of x and y values in
columns A and B,

=CORREL(A1:A40,B1:B40)

will compute the correlation coefficient r.

The exact name and syntax of this function will vary
somewhat among the different brands of spreadsheet
programs.

Nonlinear Regression – p. 10/19



Linear Regression
Most spreadsheets have a functions called SLOPE and
INTERCEPT that will calculate m and b for a regression line.
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Most spreadsheets have a functions called SLOPE and
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For example, if there are 40 pairs of x and y values in
columns A and B,

=SLOPE(A1:A40,B1:B40)

will compute the slope m.
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Linear Regression
Most spreadsheets have a functions called SLOPE and
INTERCEPT that will calculate m and b for a regression line.

For example, if there are 40 pairs of x and y values in
columns A and B,

=SLOPE(A1:A40,B1:B40)

will compute the slope m.

=INTERCEPT(A1:A40,B1:B40)

will compute the intercept b.
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Linear Regression
The RMS error s can be computed as

s =
√

1 − r2
· SDy
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Linear Regression
The RMS error s can be computed as

s =
√

1 − r2
· SDy

If there are 40 pairs of x and y values in columns A and B,

= SQRT (1 − (CORREL(A1 : A40, B1 :

B40)2) ∗ STDEV (B1 : B40)

will compute the RMS error s.
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Linear Regression
One of the most common uses of regression is to estimate
the rate of growth of some quantity.
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One of the most common uses of regression is to estimate
the rate of growth of some quantity.

In this type of application, the x values represent time.
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Linear Regression
One of the most common uses of regression is to estimate
the rate of growth of some quantity.

In this type of application, the x values represent time.

The y values represent the quantity we want to determine
the growth rate of.

The slope represents the increase in the quantity measured
per unit of time.
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Linear Regression
The regression models we have studied so far will work fine
in this situation, provided the following assumption is
reasonable:
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in this situation, provided the following assumption is
reasonable:

The change in y measured in units is the same, on average,
for each unit of time.

Nonlinear Regression – p. 14/19



Linear Regression
The regression models we have studied so far will work fine
in this situation, provided the following assumption is
reasonable:

The change in y measured in units is the same, on average,
for each unit of time.

For example, if we are measuring cars produced, we can
assume that the number of cars produced increases or
decreases by the same amount each month.
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Linear Regression
The regression models we have studied so far will work fine
in this situation, provided the following assumption is
reasonable:

The change in y measured in units is the same, on average,
for each unit of time.

For example, if we are measuring cars produced, we can
assume that the number of cars produced increases or
decreases by the same amount each month.

That number is the slope of the regression line.
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Linear Regression
In many situations, especially in business, a different
assumption is made about the nature of growth.
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Linear Regression
In many situations, especially in business, a different
assumption is made about the nature of growth.

In these applications, it is assumed that the percentage
change in y from month to month is constant.
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Linear Regression
In many situations, especially in business, a different
assumption is made about the nature of growth.

In these applications, it is assumed that the percentage
change in y from month to month is constant.

This creates a problem, because x and y no longer have a
linear relationship
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Linear Regression
In many situations, especially in business, a different
assumption is made about the nature of growth.

In these applications, it is assumed that the percentage
change in y from month to month is constant.

This creates a problem, because x and y no longer have a
linear relationship

That is, the equation

y = mx + b + e

no longer holds.
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Linear Regression
In a constant percentage growth situation, if we plot y and x

over time, we do not get a straight line:

y = mx + b
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Linear Regression
In a constant percentage growth situation, if we plot y and x

over time, we do not get a straight line:

y = mx + b

Constant percentage growth produces an exponential
curve. One formulation is:

y = b · mx
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Linear Regression
In a constant percentage growth situation, if we plot y and x

over time, we do not get a straight line:

y = mx + b

Constant percentage growth produces an exponential
curve. One formulation is:

y = b · mx

Generally speaking, a curve is much more difficult to fit to
data than a straight line.
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Linear Regression
One way to handle this is with a transformation
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Linear Regression
One way to handle this is with a transformation

In general a transformation turns data that fits one model
into data that fits another.
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Linear Regression
One way to handle this is with a transformation

In general a transformation turns data that fits one model
into data that fits another.

Hopefully, the second model is easier to work with.
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Linear Regression
One way to handle this is with a transformation

In general a transformation turns data that fits one model
into data that fits another.

Hopefully, the second model is easier to work with.

Once we have the fitted or projected values, we reverse the
transformation to recover the original measures.

Nonlinear Regression – p. 17/19



Linear Regression
There are many transformations, but the one that works in
this case is the log transform
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Linear Regression
There are many transformations, but the one that works in
this case is the log transform

If we take (natural) logs of both sides of the equation

y = b · mx

we get
ln y = ln b + ln m · x
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Linear Regression
There are many transformations, but the one that works in
this case is the log transform

If we take (natural) logs of both sides of the equation

y = b · mx

we get
ln y = ln b + ln m · x

Now we have a linear equation instead of an exponential
one.
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Linear Regression
The inverse of the log transform is the exponential, usually
denoted by EXP
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Linear Regression
The inverse of the log transform is the exponential, usually
denoted by EXP

To get back to a model for the untransformed data, we
apply the inverse of the transform to the fitted y values, the
slope, and the intercept. For the original model,

m = EXP (SLOPE)

b = EXP (INTERCEPT )

y = EXP (SLOPE ∗ x + INTERCEPT )
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Linear Regression
The inverse of the log transform is the exponential, usually
denoted by EXP

To get back to a model for the untransformed data, we
apply the inverse of the transform to the fitted y values, the
slope, and the intercept. For the original model,

m = EXP (SLOPE)

b = EXP (INTERCEPT )

y = EXP (SLOPE ∗ x + INTERCEPT )

Use these values with the model

y = b · mx

Nonlinear Regression – p. 19/19


	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression

	Linear Regression
	Linear Regression
	Linear Regression


