Sullivan Section 3.4

Gene Quinn

Measures of Position

In this section, we introduce a new group of measures.

Measures of Position

In this section, we introduce a new group of measures.
Measures of central tendency are used to describe the "average" or typical data value.

Measures of Position

In this section, we introduce a new group of measures.
Measures of central tendency are used to describe the "average" or typical data value.

Measures of dispersion are used to describe the degree to which data values are "spread out".

Measures of Position

In this section, we introduce a new group of measures.
Measures of central tendency are used to describe the "average" or typical data value.

Measures of dispersion are used to describe the degree to which data values are "spread out".

We now introduce measures of position, which are used to indicate the relative position of a certain data value within the entire set of data values.

Z Scores

The most natural way to indicate relative position within a population would seem to be the deviation from the population mean:

$$
x-\mu
$$

Z Scores

The most natural way to indicate relative position within a population would seem to be the deviation from the population mean:

$$
x-\mu
$$

One drawback of this measure is that datasets with different dispersion will have different values for the same relative position:

In a population with a small standard deviation, a data value with a relatively small deviation may in fact be at an extreme in terms of the overall distribution of data.

Z Scores

The most natural way to indicate relative position within a population would seem to be the deviation from the population mean:

$$
x-\mu
$$

One drawback of this measure is that datasets with different dispersion will have different values for the same relative position:

In a population with a small standard deviation, a data value with a relatively small deviation may in fact be at an extreme in terms of the overall distribution of data.

On the other hand, in a population with a large standard deviation, a data value with a relatively large deviation might be relatively close to the middle.

Z Scores

The Z-score attemts to adjust for this by dividing by the standard deviation.

As with the mean and standard deviation, there are two kinds of Z-scores.

Population Z Scores

Definition:

The population Z-score for a data value x is defined as

$$
z=\frac{x-\mu}{\sigma}
$$

Data Value Z Scores

Definition:

The sample Z-score for a data value x is defined as

$$
z=\frac{x-\bar{x}}{s}
$$

Some Facts About Z Scores

The same symbol, z is used for both the population and sample Z-scores.

Some Facts About Z Scores

The same symbol, z is used for both the population and sample Z-scores.

Because of the way it is calculated, the mean of the Z-scores for either a population or a sample is always 0 .

Some Facts About Z Scores

The same symbol, z is used for both the population and sample Z-scores.

Because of the way it is calculated, the mean of the Z-scores for either a population or a sample is always 0 .

The standard deviation of the Z-scores from a population or sample is always 1 .

Some Facts About Z Scores

The same symbol, z is used for both the population and sample Z-scores.

Because of the way it is calculated, the mean of the Z-scores for either a population or a sample is always 0 .

The standard deviation of the Z-scores from a population or sample is always 1.

The term standardized scores is often used to data values that have been converted to Z-scores.

Percentiles

The median is the value X with the property that 50% of the data values fall below it and 50% fall above it.

Percentiles

The median is the value X with the property that 50% of the data values fall below it and 50% fall above it.

This idea can be generalized by allowing any percentage to be the dividing line.

These more general measures are called percentiles.

Percentiles

The median is the value X with the property that 50% of the data values fall below it and 50% fall above it.

This idea can be generalized by allowing any percentage to be the dividing line.

These more general measures are called percentiles.
Definition: The $k^{t h}$ percentile P_{k} is the number that divides the lower $k \%$ of the data set from the upper $(100-k) \%$.

Percentiles

The number k can be any whole number from 1 to 99 , inclusive.

Percentiles

The number k can be any whole number from 1 to 99 , inclusive.

The $1^{\text {st }}$ percentile P_{1} divides the bottom 1% of the data from the top 99%.

Percentiles

The number k can be any whole number from 1 to 99 , inclusive.

The $1^{\text {st }}$ percentile P_{1} divides the bottom 1% of the data from the top 99%.

The $12^{\text {th }}$ percentile P_{12} divides the bottom 12% of the data from the top 88%.

Percentiles

The number k can be any whole number from 1 to 99 , inclusive.

The $1^{\text {st }}$ percentile P_{1} divides the bottom 1% of the data from the top 99%.

The $12^{\text {th }}$ percentile P_{12} divides the bottom 12% of the data from the top 88%.

The $92^{\text {nd }}$ percentile P_{92} divides the bottom 92% of the data from the top 8%.

Percentiles

One of the most common applications of percentiles is to measure the relative standing.

Percentiles

One of the most common applications of percentiles is to measure the relative standing.

Scores on standardized tests like the SAT are reported together with a percentile.

Percentiles

One of the most common applications of percentiles is to measure the relative standing.

Scores on standardized tests like the SAT are reported together with a percentile.

In fact, results of the vast majority of psychoeducational tests are reported as percentiles.

Quartiles

The most commonly used percentiles are called quartiles.

Quartiles

The most commonly used percentiles are called quartiles.
Quartiles divide the data into two parts which are even multiples of 25%.

Quartiles

The most commonly used percentiles are called quartiles.
Quartiles divide the data into two parts which are even multiples of 25%.

Quartiles

- 1) The first quartile is the $25^{\text {th }}$ percentile P_{25} which is also given the symbol Q_{1} and called the first quartile.

Quartiles

- 1) The first quartile is the $25^{\text {th }}$ percentile P_{25} which is also given the symbol Q_{1} and called the first quartile.
- 2) The second quartile is the $50^{\text {th }}$ percentile P_{50} which is the same as the median M. The second quartile is denoted by Q_{2}.

Quartiles

- 1) The first quartile is the $25^{\text {th }}$ percentile P_{25} which is also given the symbol Q_{1} and called the first quartile.
- 2) The second quartile is the $50^{\text {th }}$ percentile P_{50} which is the same as the median M. The second quartile is denoted by Q_{2}.
- 3) The third quartile is the $75^{\text {th }}$ percentile P_{75} which is also given the symbol Q_{3}.

The Interquartile Range

Quartiles are used to determine a measure called the interquartile range.

The Interquartile Range

Quartiles are used to determine a measure called the interquartile range.

Definition:

The interquartile range or IQR is the difference between the first and third quartiles,

$$
\mathrm{IQR}=Q_{3}-Q_{1}
$$

Outliers

Observations that fall at extreme values are called outliers.

Outliers

Observations that fall at extreme values are called outliers.
There are various ways to define outliers. One common way is to define as an outlier any observation that is

- 1.5 times the $I Q R$ below the first quartile Q_{1} or
- 1.5 times the $I Q R$ above the third quartile Q_{3}

Outliers

Observations that fall at extreme values are called outliers.
There are various ways to define outliers. One common way is to define as an outlier any observation that is

- 1.5 times the $I Q R$ below the first quartile Q_{1} or
- 1.5 times the $I Q R$ above the third quartile Q_{3}

The cutoff points for outliers are called fences.

Outliers

The procedure to check for outliers is the following:

- Determine the first and third quartiles Q_{1} and Q_{3}

Outliers

The procedure to check for outliers is the following:

- Determine the first and third quartiles Q_{1} and Q_{3}
- Compute the $I Q R$ which is $Q_{3}-Q_{1}$

Outliers

The procedure to check for outliers is the following:

- Determine the first and third quartiles Q_{1} and Q_{3}
- Compute the $I Q R$ which is $Q_{3}-Q_{1}$
- Determine the fences:
- The lower fence is $Q_{1}-1.5 \cdot(I Q R)$
- The upper fence is $Q_{3}+1.5 \cdot(I Q R)$

Outliers

The procedure to check for outliers is the following:

- Determine the first and third quartiles Q_{1} and Q_{3}
- Compute the $I Q R$ which is $Q_{3}-Q_{1}$
- Determine the fences:
- The lower fence is $Q_{1}-1.5 \cdot(I Q R)$
- The upper fence is $Q_{3}+1.5 \cdot(I Q R)$
- If a data value is less than the lower fence or grater than the upper fence, it is considered an outlier.

Outliers

The procedure to check for outliers is the following:

- Determine the first and third quartiles Q_{1} and Q_{3}
- Compute the $I Q R$ which is $Q_{3}-Q_{1}$
- Determine the fences:
- The lower fence is $Q_{1}-1.5 \cdot(I Q R)$
- The upper fence is $Q_{3}+1.5 \cdot(I Q R)$
- If a data value is less than the lower fence or grater than the upper fence, it is considered an outlier.

Outliers

The procedure to check for outliers is the following:

- Determine the first and third quartiles Q_{1} and Q_{3}
- Compute the $I Q R$ which is $Q_{3}-Q_{1}$
- Determine the fences:
- The lower fence is $Q_{1}-1.5 \cdot(I Q R)$
- The upper fence is $Q_{3}+1.5 \cdot(I Q R)$
- If a data value is less than the lower fence or grater than the upper fence, it is considered an outlier.

