Obtaining $z_{\alpha / 2}$ and $t_{\alpha / 2}$ Values for a Given α

Gene Quinn

Obtaining $z_{\alpha / 2}$ Values Given α

Given α, there are two ways to obtain the value of $z_{\alpha / 2}$:

- Use a Standard Normal Distribution table (TABLE II in the Sullivan text)
- Use the =NORMSINV() function of a spreadsheet

Obtaining $z_{\alpha / 2}$ Values from a Table

To find $z_{\alpha / 2}$ from the table, use the following procedure.
Step 1: Find the smallest value in the body of the table that is greater than or equal to $1-\alpha / 2$.

Obtaining $z_{\alpha / 2}$ Values from a Table

To find $z_{\alpha / 2}$ from the table, use the following procedure.
Step 1: Find the smallest value in the body of the table that is greater than or equal to $1-\alpha / 2$.
Step 2: Read across the row containing the value identified in step 1 to the " z " column, and note the value.

Obtaining $z_{\alpha / 2}$ Values from a Table

To find $z_{\alpha / 2}$ from the table, use the following procedure.
Step 1: Find the smallest value in the body of the table that is greater than or equal to $1-\alpha / 2$.
Step 2: Read across the row containing the value identified in step 1 to the " z " column, and note the value.
Step 3: Read up the column containing the value identified in step 1 to the top and note the number at the top of the column, which will be a decimal followed by a zero and one digit.

Obtaining $z_{\alpha / 2}$ Values from a Table

To find $z_{\alpha / 2}$ from the table, use the following procedure.
Step 1: Find the smallest value in the body of the table that is greater than or equal to $1-\alpha / 2$.

Step 2: Read across the row containing the value identified in step 1 to the " z " column, and note the value.

Step 3: Read up the column containing the value identified in step 1 to the top and note the number at the top of the column, which will be a decimal followed by a zero and one digit.
Step 4: If the value in the " z " column is positive, $z_{\alpha / 2}$ is the value in the "z" column identified in Step 2 plus the value at the top of the column identified in Step 3.

Obtaining $z_{\alpha / 2}$ Values from a Table

To find $z_{\alpha / 2}$ from the table, use the following procedure.
Step 1: Find the smallest value in the body of the table that is greater than or equal to $1-\alpha / 2$.

Step 2: Read across the row containing the value identified in step 1 to the " z " column, and note the value.

Step 3: Read up the column containing the value identified in step 1 to the top and note the number at the top of the column, which will be a decimal followed by a zero and one digit.
Step 4: If the value in the " z " column is positive, $z_{\alpha / 2}$ is the value in the "z" column identified in Step 2 plus the value at the top of the column identified in Step 3.
Step 5: If the value in the " z " column is negative, $z_{\alpha / 2}$ is the value in the "z" column identified in Step 2 minus the value at the top of the column identified in Step 3.

Obtaining $z_{\alpha / 2}$ Values from a Table

Example: Find $z_{\alpha / 2}$ if $\alpha=0.05$.
Step 1: Find the smallest value in the body of the table that is greater than or equal to $1-\alpha / 2$.
$1-0.025$ is 0.975 .
The value in the table is 0.9750 .

Obtaining $z_{\alpha / 2}$ Values from a Table

Example: Find $z_{\alpha / 2}$ if $\alpha=0.05$.
Step 1: Find the smallest value in the body of the table that is greater than or equal to $1-\alpha / 2$.
$1-0.025$ is 0.975 .
The value in the table is 0.9750 .
Step 2: Read across the row containing the value identified in step 1 to the "z" column, and note the value. In this case, it's 1.9.

Obtaining $z_{\alpha / 2}$ Values from a Table

Example: Find $z_{\alpha / 2}$ if $\alpha=0.05$.
Step 1: Find the smallest value in the body of the table that is greater than or equal to $1-\alpha / 2$.
$1-0.025$ is 0.975 .
The value in the table is 0.9750 .
Step 2: Read across the row containing the value identified in step 1 to the "z" column, and note the value. In this case, it's 1.9.
Step 3: Read up the column containing the value identified in step 1 to the top and note the number at the top of the column, which will be a decimal followed by a zero and one digit. In this case, it's . 06 .

Obtaining $z_{\alpha / 2}$ Values from a Table

Example: Find $z_{\alpha / 2}$ if $\alpha=0.05$.
Step 1: Find the smallest value in the body of the table that is greater than or equal to $1-\alpha / 2$.
$1-0.025$ is 0.975 .
The value in the table is 0.9750 .
Step 2: Read across the row containing the value identified in step 1 to the " z " column, and note the value. In this case, it's 1.9.

Step 3: Read up the column containing the value identified in step 1 to the top and note the number at the top of the column, which will be a decimal followed by a zero and one digit. In this case, it's . 06 .
Step 4: The value in the "z" column is positive, so $z_{\alpha / 2}$ is the value in the "z" column identified in Step 2 (1.9) plus the value at the top of the column identified in Step 3 (.06). So, $z_{\alpha / 2}=1.96$.

Obtaining $z_{\alpha / 2}$ Values Using a Spreadsheet

An easier way to obtain $z_{\alpha / 2}$ is to use a spreadsheet.

Obtaining $z_{\alpha / 2}$ Values Using a Spreadsheet

An easier way to obtain $z_{\alpha / 2}$ is to use a spreadsheet.
The NORMSINV() function of a spreadsheet computes z values from $\alpha / 2$ values.

Obtaining $z_{\alpha / 2}$ Values Using a Spreadsheet

An easier way to obtain $z_{\alpha / 2}$ is to use a spreadsheet.
The NORMSINV() function of a spreadsheet computes z values from $\alpha / 2$ values.

The argument to the $\operatorname{NORMSINV}()$ function is $\alpha / 2$.

Obtaining $z_{\alpha / 2}$ Values Using a Spreadsheet

An easier way to obtain $z_{\alpha / 2}$ is to use a spreadsheet.
The NORMSINV() function of a spreadsheet computes z values from $\alpha / 2$ values.

The argument to the NORMSINV() function is $\alpha / 2$.
The formula that goes in the cell is:
$=$ NORMSINV $(\alpha / 2)$

Obtaining $z_{\alpha / 2}$ Values Using a Spreadsheet

Example: If $\alpha=0.05$, find $z_{\alpha / 2}$.

Obtaining $z_{\alpha / 2}$ Values Using a Spreadsheet

Example: If $\alpha=0.05$, find $z_{\alpha / 2}$.
Solution: $\alpha / 2$ is 0.025 .
The formula is:
$=$ NORMSINV(0.025)
The result is 1.9600 , which is $z_{\alpha / 2}$.

Obtaining $t_{\alpha / 2}$ Values Given α

Given α, there are two ways to obtain the value of $t_{\alpha / 2}$:

- Use a t-Distribution table (TABLE III in the Sullivan text)
- Use the =TINV() function of a spreadsheet

Obtaining $t_{\alpha / 2}$ Values from a Table

To find $t_{\alpha / 2}$ from the table, use the following procedure.
Step 1: Calculate $\alpha / 2$.

Obtaining $t_{\alpha / 2}$ Values from a Table

To find $t_{\alpha / 2}$ from the table, use the following procedure.
Step 1: Calculate $\alpha / 2$.
Step 2: Find the column whose heading matches the value of $\alpha / 2$. (If there is no such column, use a spreadsheet to find $t_{\alpha / 2}$)

Obtaining $t_{\alpha / 2}$ Values from a Table

To find $t_{\alpha / 2}$ from the table, use the following procedure.
Step 1: Calculate $\alpha / 2$.
Step 2: Find the column whose heading matches the value of $\alpha / 2$. (If there is no such column, use a spreadsheet to find $t_{\alpha / 2}$)
Read down the column to the row whose value in the "df" column matches n, the sample size. This value is $t_{\alpha / 2}$.

If there is no exact match in the "df" column, use the row with the largest "df" value that is smaller than the sample size n.

Obtaining $t_{\alpha / 2}$ Values from a Table

Example: Find $t_{\alpha / 2}$ for $\alpha=0.05$ and a sample size of 40 .
Step 1: Calculate $\alpha / 2$. The value is 0.025 .

Obtaining $t_{\alpha / 2}$ Values from a Table

Example: Find $t_{\alpha / 2}$ for $\alpha=0.05$ and a sample size of 40 .
Step 1: Calculate $\alpha / 2$. The value is 0.025 .
Step 2: There is a column whose heading is 0.025 , so we can find $t_{\alpha / 2}$ without a spreadsheet.

Obtaining $t_{\alpha / 2}$ Values from a Table

Example: Find $t_{\alpha / 2}$ for $\alpha=0.05$ and a sample size of 40 .
Step 1: Calculate $\alpha / 2$. The value is 0.025 .
Step 2: There is a column whose heading is 0.025 , so we can find $t_{\alpha / 2}$ without a spreadsheet.

Read down the column to the row whose value in the "df" column is 40 . The number is 2.021 , which is $t_{\alpha / 2}$.

Obtaining $t_{\alpha / 2}$ Values Using a Spreadsheet

An easier way to obtain $z_{\alpha / 2}$ is to use a spreadsheet.

Obtaining $t_{\alpha / 2}$ Values Using a Spreadsheet

An easier way to obtain $z_{\alpha / 2}$ is to use a spreadsheet.
The $\operatorname{TINV}()$ function of a spreadsheet computes t values from α values.

Obtaining $t_{\alpha / 2}$ Values Using a Spreadsheet

An easier way to obtain $z_{\alpha / 2}$ is to use a spreadsheet.
The $\operatorname{TINV}()$ function of a spreadsheet computes t values from α values.
The argument to the $\operatorname{NORMSINV}()$ function is α.

Obtaining $t_{\alpha / 2}$ Values Using a Spreadsheet

An easier way to obtain $z_{\alpha / 2}$ is to use a spreadsheet.
The $\operatorname{TINV}()$ function of a spreadsheet computes t values from α values.
The argument to the $\operatorname{NORMSINV}()$ function is α.
The formula that goes in the cell is:
$=$ NORMSINV (α)

Obtaining $t_{\alpha / 2}$ Values Using a Spreadsheet

Example: If $\alpha=0.05$, find $t_{\alpha / 2}$ for a sample size of 40 .

Obtaining $t_{\alpha / 2}$ Values Using a Spreadsheet

Example: If $\alpha=0.05$, find $t_{\alpha / 2}$ for a sample size of 40 .
Solution: Because the TINV() function computes t values for a two-sided confidence interval, we do not have to compute $\alpha / 2$.

The arguments supplied to $\operatorname{TINV}()$ are α and the sample size n.

Obtaining $t_{\alpha / 2}$ Values Using a Spreadsheet

Example: If $\alpha=0.05$, find $t_{\alpha / 2}$ for a sample size of 40 .
Solution: Because the TINV() function computes t values for a two-sided confidence interval, we do not have to compute $\alpha / 2$.

The arguments supplied to $\operatorname{TINV}()$ are α and the sample size n.
The formula is:
$=\operatorname{TINV}(0.05,40)$
The result is 2.0211, which is the value of $t_{\alpha / 2}$.

