Hypothesis Testing Procedures

Gene Quinn

We will assume at first that the population standard deviation σ is known.

The procedure when σ is unknown is very similiar and a separate procedure will be provided for that situation.

Suppose that:

• We know or can assume that we know the value of the population standard deviation σ .

- We know or can assume that we know the value of the population standard deviation σ .
- \checkmark We have a random sample of size n from the population

- We know or can assume that we know the value of the population standard deviation σ .
- We have a random sample of size n from the population
- We know the sample mean \overline{x}

- We know or can assume that we know the value of the population standard deviation σ .
- We have a random sample of size n from the population
- We know the sample mean \overline{x}
- We know that if the null hypothesis H_0 is true, the population mean is μ_0 .

- We know or can assume that we know the value of the population standard deviation σ .
- We have a random sample of size n from the population
- We know the sample mean \overline{x}
- We know that if the null hypothesis H_0 is true, the population mean is μ_0 .
- \checkmark We have chosen a value α for the level of significance

- We know or can assume that we know the value of the population standard deviation σ .
- \checkmark We have a random sample of size n from the population
- We know the sample mean \overline{x}
- We know that if the null hypothesis H_0 is true, the population mean is μ_0 .
- \checkmark We have chosen a value α for the level of significance
- We are interested in a Two-Tailed test: The alternative hypothesis H_1 states that $\mu \neq \mu_0$, the population mean μ does not equal μ_0 .

The steps in the confidence interval method are:

• Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at \overline{x}

The steps in the confidence interval method are:

- Construct a $(1 \alpha) \cdot 100\%$ confidence interval centered at \overline{x}
- If μ_0 lies within the confidence interval, accept H_0 .

The steps in the confidence interval method are:

- Construct a $(1 \alpha) \cdot 100\%$ confidence interval centered at \overline{x}
- If μ_0 lies within the confidence interval, accept H_0 .
- Otherwise, reject H_0 in favor of H_1 .

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at \overline{x} .

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at \overline{x} .

The lower limit of the confidence interval is:

$$L = \overline{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at \overline{x} .

The lower limit of the confidence interval is:

$$L = \overline{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

The upper limit of the confidence interval is:

$$U = \overline{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Step 2: Determine whether μ_0 , the population mean when the null hypothesis is true, lies within the confidence interval:

Does μ_0 lie between *L* and *U* ?

Step 2: Determine whether μ_0 , the population mean when the null hypothesis is true, lies within the confidence interval:

Does μ_0 lie between *L* and *U* ?

If so, **accept** the null hypothesis H_0 .

Step 2: Determine whether μ_0 , the population mean when the null hypothesis is true, lies within the confidence interval:

Does μ_0 lie between *L* and *U* ?

If so, **accept** the null hypothesis H_0 .

If not, **reject** the null hypothesis H_0

An equivalent way of looking at the hypothesis test is the so-called classical method.

An equivalent way of looking at the hypothesis test is the so-called classical method.

When the null hypothesis H_0 is true, the *z*-score associated with \overline{x} is:

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

An equivalent way of looking at the hypothesis test is the so-called classical method.

When the null hypothesis H_0 is true, the *z*-score associated with \overline{x} is:

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

If z_0 lies between $-z_{\alpha/2}$ and $z_{\alpha/2}$, we accept H_0

An equivalent way of looking at the hypothesis test is the so-called classical method.

When the null hypothesis H_0 is true, the *z*-score associated with \overline{x} is:

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

If z_0 lies between $-z_{\alpha/2}$ and $z_{\alpha/2}$, we accept H_0

Otherwise, we **reject** H_0

Another way of looking at the hypothesis test is the P-Value method.

Another way of looking at the hypothesis test is the P-Value method.

When the null hypothesis H_0 is true, the *z*-score associated with \overline{x} is:

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

Another way of looking at the hypothesis test is the P-Value method.

When the null hypothesis H_0 is true, the *z*-score associated with \overline{x} is:

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

If the probability that a standard normal random variable is less than $-z_0$ or greater than z_0 is less than α , we **accept** H_0

Another way of looking at the hypothesis test is the P-Value method.

When the null hypothesis H_0 is true, the *z*-score associated with \overline{x} is:

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

If the probability that a standard normal random variable is less than $-z_0$ or greater than z_0 is less than α , we **accept** H_0

Otherwise, we **reject** H_0

Suppose that:

 \checkmark We have a random sample of size n from the population

- \checkmark We have a random sample of size n from the population
- \checkmark We know the sample mean \overline{x}

- We have a random sample of size n from the population
- We know the sample mean \overline{x}
- \checkmark We do not know the population standard deviation σ

- We have a random sample of size n from the population
- We know the sample mean \overline{x}
- We do not know the population standard deviation σ
- We know that if the null hypothesis H_0 is true, the population mean is μ_0 .

- We have a random sample of size n from the population
- We know the sample mean \overline{x}
- We do not know the population standard deviation σ
- We know that if the null hypothesis H_0 is true, the population mean is μ_0 .
- \checkmark We have chosen a value α for the level of significance

- \checkmark We have a random sample of size n from the population
- We know the sample mean \overline{x}
- \checkmark We do not know the population standard deviation σ
- We know that if the null hypothesis H_0 is true, the population mean is μ_0 .
- \checkmark We have chosen a value α for the level of significance
- We are interested in a Two-Tailed test: The alternative hypothesis H_1 states that $\mu \neq \mu_0$, the population mean μ does not equal μ_0 .

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at \overline{x} .

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at \overline{x} .

The lower limit of the confidence interval is:

$$L = \overline{x} - t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

Step 1: Construct a $(1 - \alpha) \cdot 100\%$ confidence interval centered at \overline{x} .

The lower limit of the confidence interval is:

$$L = \overline{x} - t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

The upper limit of the confidence interval is:

$$U = \overline{x} + t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

Step 2: Determine whether μ_0 , the population mean when the null hypothesis is true, lies within the confidence interval:

Does μ_0 lie between *L* and *U* ?

Step 2: Determine whether μ_0 , the population mean when the null hypothesis is true, lies within the confidence interval:

Does μ_0 lie between *L* and *U* ?

If so, **accept** the null hypothesis H_0 .

Step 2: Determine whether μ_0 , the population mean when the null hypothesis is true, lies within the confidence interval:

Does μ_0 lie between *L* and *U* ?

If so, **accept** the null hypothesis H_0 .

If not, **reject** the null hypothesis H_0

An equivalent way of looking at the hypothesis test is the so-called classical method.

An equivalent way of looking at the hypothesis test is the so-called classical method.

When the null hypothesis H_0 is true, the *t*-score associated with \overline{x} is:

$$t_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

An equivalent way of looking at the hypothesis test is the so-called classical method.

When the null hypothesis H_0 is true, the *t*-score associated with \overline{x} is:

$$t_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

If t_0 lies between $-t_{\alpha/2}(n-1)$ and $t_{\alpha/2}(n-1)$, we accept H_0

An equivalent way of looking at the hypothesis test is the so-called classical method.

When the null hypothesis H_0 is true, the *t*-score associated with \overline{x} is:

$$t_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

If t_0 lies between $-t_{\alpha/2}(n-1)$ and $t_{\alpha/2}(n-1)$, we accept H_0

Otherwise, we **reject** H_0

Another way of looking at the hypothesis test is the P-Value method.

Another way of looking at the hypothesis test is the P-Value method.

When the null hypothesis H_0 is true, the *t*-score associated with \overline{x} is:

$$t_0 = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$

Another way of looking at the hypothesis test is the P-Value method.

When the null hypothesis H_0 is true, the *t*-score associated with \overline{x} is:

$$\overline{t}_0 = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$

If the probability that a *t* random variable with n - 1 degrees of freedom is less than $-t_0$ or greater than t_0 is less than α , we **accept** H_0

Another way of looking at the hypothesis test is the P-Value method.

When the null hypothesis H_0 is true, the *t*-score associated with \overline{x} is:

$$t_0 = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$

If the probability that a *t* random variable with n - 1 degrees of freedom is less than $-t_0$ or greater than t_0 is less than α , we **accept** H_0

Otherwise, we **reject** H_0