Question 1

Determine whether the following integral is improper, and if so why that is.

$$
\int_{1}^{2} \frac{1}{2 x-1} d x
$$

1. Discontinuity at $x=1$ 4. Infinite interval of integration
2. Discontinuity at $x=2 \quad$ 5. The integral is not improper
3. Discontinuity at $x=1 / 2 \quad 6$. none of the above

Question 1

Determine whether the following integral is improper, and if so why that is.

$$
\int_{1}^{2} \frac{1}{2 x-1} d x
$$

1. Discontinuity at $x=1$ 4. Infinite interval of integratior
2. Discontinuity at $x=2 \quad$ 5. The integral is not improper
3. Discontinuity at $x=1 / 2 \quad 6$. none of the above
4. The integrand is defined and continuous on [1, 2]

Question 2

Determine whether the following integral is improper, and if so why that is.

$$
\int_{0}^{1} \frac{1}{2 x-1} d x
$$

1. Discontinuity at $x=1$ 4. Infinite interval of integration
2. Discontinuity at $x=2 \quad$ 5. The integral is not improper
3. Discontinuity at $x=1 / 2 \quad 6$. none of the above

Question 2

Determine whether the following integral is improper, and if so why that is.

$$
\int_{0}^{1} \frac{1}{2 x-1} d x
$$

1. Discontinuity at $x=1$ 4. Infinite interval of integratior
2. Discontinuity at $x=2 \quad 5$. The integral is not improper
3. Discontinuity at $x=1 / 2 \quad 6$. none of the above
4. The integrand has an infinite discontinuity at $x=1 / 2$
(Type II improper integral)

Question 3

Determine whether the following integral is improper, and if so why that is.

$$
\int_{-\infty}^{\infty} \frac{\sin x}{1+x^{2}} d x
$$

1. Discontinuity at $x=1$ 4. Infinite interval of integration
2. Discontinuity at $x=2 \quad 5$. The integral is not improper
3. Discontinuity at $x=1 / 2 \quad 6$. none of the above

Question 3

Determine whether the following integral is improper, and if so why that is.

$$
\int_{-\infty}^{\infty} \frac{\sin x}{1+x^{2}} d x
$$

1. Discontinuity at $x=1$ 4. Infinite interval of integration
2. Discontinuity at $x=2 \quad 5$. The integral is not improper
3. Discontinuity at $x=1 / 2 \quad 6$. none of the above
4. Infinite interval

Question 4

Determine whether the following integral is improper, and if so why that is.

$$
\int_{1}^{2} \ln (x-1) d x
$$

1. Discontinuity at $x=1$ 4. Infinite interval of integration
2. Discontinuity at $x=2 \quad$ 5. The integral is not improper
3. Discontinuity at $x=1 / 2 \quad 6$. none of the above

Question 4

Determine whether the following integral is improper, and if so why that is.

$$
\int_{1}^{2} \ln (x-1) d x
$$

1. Discontinuity at $x=1$ 4. Infinite interval of integratior
2. Discontinuity at $x=2 \quad$ 5. The integral is not improper
3. Discontinuity at $x=1 / 2 \quad 6$. none of the above
4. Discontinuity at $x=1$ (Type II improper integral)

Question 5

Evaluate the integral:

$$
\int_{-\infty}^{0} \frac{1}{2 x-5} d x
$$

1. $\frac{1}{2} \ln 5 \quad$ 4. Diverges to ∞
2. $1+\frac{1}{2} \ln 5 \quad$ 5. \quad Diverges to $-\infty$
3. $0 \quad$ 6. none of the above

Question 5

Evaluate the integral:

$$
\int_{-\infty}^{0} \frac{1}{2 x-5} d x
$$

1. $\frac{1}{2} \ln 5$ 4. Diverges to ∞
2. $1+\frac{1}{2} \ln 5$ 5. Diverges to $-\infty$
3. 0 6. none of the above
4. Diverges to $-\infty$
