Approximate Integration

There are situations where we are not able to find an antiderivative for a given function.

Approximate Integration

There are situations where we are not able to find an antiderivative for a given function.

Some integrable functions do not have antiderivatives that can be expressed in terms of elementary functions.

Approximate Integration

There are situations where we are not able to find an antiderivative for a given function.

Some integrable functions do not have antiderivatives that can be expressed in terms of elementary functions.

In other cases, the data values may represent laboratory measurements or samples of instrument readings.

Approximate Integration

There are situations where we are not able to find an antiderivative for a given function.

Some integrable functions do not have antiderivatives that can be expressed in terms of elementary functions.

In other cases, the data values may represent laboratory measurements or samples of instrument readings.

In these situations we can use numerical techniques known as approximate integration

Approximate Integration

The three techniques we will study,

- The Midpoint Rule
- The Trapezoidal Rule
- Simpson's Rule
are slightly modified versions of the Riemann sums we used to find the area under curves.

Approximate Integration

The Midpoint Rule: evaluate f at the midpoint of each interval.

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \approx M_{n}=\Delta x\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right] \\
\Delta x=\frac{b-a}{n} \quad \text { and } \quad \bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)
\end{gathered}
$$

\bar{x}_{i} is the midpoint of the interval $\left[x_{i-1}, x_{i}\right]$.

Approximate Integration

The Trapezoidal Rule: evaluate f at each end of the interval and average the result.

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \approx T_{n} \\
T_{n}=\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
\Delta x=\frac{b-a}{n}
\end{gathered}
$$

Approximate Integration

Simpson's Rule:

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \approx S_{n} \\
S_{n}=\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots\right. \\
\left.\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\
\Delta x=\frac{b-a}{n} \quad n \text { must be even }
\end{gathered}
$$

Error of Approximation

With any approximation technique, we need to know how good the approximation is.

Error of Approximation

With any approximation technique, we need to know how good the approximation is.

Define the error terms for M_{n}, T_{n}, and S_{n} as:

$$
E_{M}=\int_{a}^{b} f(x) d x-M_{n} \quad E_{T}=\int_{a}^{b} f(x) d x-T_{n}
$$

and

$$
E_{S}=\int_{a}^{b} f(x) d x-S_{n}
$$

Error of Approximation

With any approximation technique, we need to know how good the approximation is.

Define the error terms for M_{n}, T_{n}, and S_{n} as:

$$
E_{M}=\int_{a}^{b} f(x) d x-M_{n} \quad E_{T}=\int_{a}^{b} f(x) d x-T_{n}
$$

and

$$
E_{S}=\int_{a}^{b} f(x) d x-S_{n}
$$

Since we usually don't know the exact value of the integral, we cannot compute these errors exactly.

Error of Approximation

With any approximation technique, we need to know how good the approximation is.

Define the error terms for M_{n}, T_{n}, and S_{n} as:

$$
E_{M}=\int_{a}^{b} f(x) d x-M_{n} \quad E_{T}=\int_{a}^{b} f(x) d x-T_{n}
$$

and

$$
E_{S}=\int_{a}^{b} f(x) d x-S_{n}
$$

Since we usually don't know the exact value of the integral, we cannot compute these errors exactly.

However, we can determine upper bounds for them. This is the worst case scenario.

Error of Approximation

For the Trapezoidal Rule, the maximum possible absolute error is

$$
\max \left|E_{T}\right|=\frac{K(b-a)^{3}}{12 n^{2}}
$$

Error of Approximation

For the Trapezoidal Rule, the maximum possible absolute error is

$$
\max \left|E_{T}\right|=\frac{K(b-a)^{3}}{12 n^{2}}
$$

Here K is an upper bound for the value of $\left|f^{\prime \prime}(x)\right|$ on the interval $[a, b]$.

Error of Approximation

For the Trapezoidal Rule, the maximum possible absolute error is

$$
\max \left|E_{T}\right|=\frac{K(b-a)^{3}}{12 n^{2}}
$$

Here K is an upper bound for the value of $\left|f^{\prime \prime}(x)\right|$ on the interval $[a, b]$.

That is,

$$
\left|f^{\prime \prime}(x)\right| \leq K \quad \text { if } \quad a \leq x \leq b
$$

Error of Approximation

For the Trapezoidal Rule, the maximum possible absolute error is

$$
\max \left|E_{T}\right|=\frac{K(b-a)^{3}}{12 n^{2}}
$$

Here K is an upper bound for the value of $\left|f^{\prime \prime}(x)\right|$ on the interval $[a, b]$.

That is,

$$
\left|f^{\prime \prime}(x)\right| \leq K \quad \text { if } \quad a \leq x \leq b
$$

Note that the error must be zero for a function that has $f^{\prime \prime}(x)=0$ everywhere on $[a, b]$

Error of Approximation

For the Trapezoidal Rule, the maximum possible absolute error is

$$
\max \left|E_{T}\right|=\frac{K(b-a)^{3}}{12 n^{2}}
$$

Here K is an upper bound for the value of $\left|f^{\prime \prime}(x)\right|$ on the interval $[a, b]$.

That is,

$$
\left|f^{\prime \prime}(x)\right| \leq K \quad \text { if } \quad a \leq x \leq b
$$

Note that the error must be zero for a function that has $f^{\prime \prime}(x)=0$ everywhere on $[a, b]$

This means the Trapezoidal rule is exact for a linear function $f(x)=a x+b$

Error of Approximation

For the Midpoint Rule, the maximum possible absolute error is

$$
\max \left|E_{M}\right|=\frac{K(b-a)^{3}}{24 n^{2}}
$$

Error of Approximation

For the Midpoint Rule, the maximum possible absolute error is

$$
\max \left|E_{M}\right|=\frac{K(b-a)^{3}}{24 n^{2}}
$$

Here K is an upper bound for the value of $\left|f^{\prime \prime}(x)\right|$ on the interval $[a, b]$.

Error of Approximation

For the Midpoint Rule, the maximum possible absolute error is

$$
\max \left|E_{M}\right|=\frac{K(b-a)^{3}}{24 n^{2}}
$$

Here K is an upper bound for the value of $\left|f^{\prime \prime}(x)\right|$ on the interval $[a, b]$.

Note that this is half the maximum absolute error for the trapezoidal rule.

Error of Approximation

For the Midpoint Rule, the maximum possible absolute error is

$$
\max \left|E_{M}\right|=\frac{K(b-a)^{3}}{24 n^{2}}
$$

Here K is an upper bound for the value of $\left|f^{\prime \prime}(x)\right|$ on the interval $[a, b]$.

Note that this is half the maximum absolute error for the trapezoidal rule.

Again the error must be zero for a function that has $f^{\prime \prime}(x)=0$ everywhere on $[a, b]$

Error of Approximation

For the Midpoint Rule, the maximum possible absolute error is

$$
\max \left|E_{M}\right|=\frac{K(b-a)^{3}}{24 n^{2}}
$$

Here K is an upper bound for the value of $\left|f^{\prime \prime}(x)\right|$ on the interval $[a, b]$.

Note that this is half the maximum absolute error for the trapezoidal rule.

Again the error must be zero for a function that has $f^{\prime \prime}(x)=0$ everywhere on $[a, b]$

This means the Midpoint rule is exact for a linear function $f(x)=a x+b$

Error of Approximation

For Simpson's Rule, the maximum possible absolute error is

$$
\max \left|E_{S}\right|=\frac{K(b-a)^{4}}{180 n^{4}}
$$

Error of Approximation

For Simpson's Rule, the maximum possible absolute error is

$$
\max \left|E_{S}\right|=\frac{K(b-a)^{4}}{180 n^{4}}
$$

Here K is an upper bound for the value of $\left|f^{(4)}(x)\right|$ on the interval $[a, b]$.

Error of Approximation

For Simpson's Rule, the maximum possible absolute error is

$$
\max \left|E_{S}\right|=\frac{K(b-a)^{4}}{180 n^{4}}
$$

Here K is an upper bound for the value of $\left|f^{(4)}(x)\right|$ on the interval $[a, b]$.

Note that the error must be zero for a function that has $f^{(4)}(x)=0$ everywhere on $[a, b]$

Error of Approximation

For Simpson's Rule, the maximum possible absolute error is

$$
\max \left|E_{S}\right|=\frac{K(b-a)^{4}}{180 n^{4}}
$$

Here K is an upper bound for the value of $\left|f^{(4)}(x)\right|$ on the interval $[a, b]$.

Note that the error must be zero for a function that has $f^{(4)}(x)=0$ everywhere on $[a, b]$

This means for example that Simpson's rule is exact for a cubic polynomial.

Question 1

What is the maximum possible absolute error if the Midpoint rule is used to approximate

$$
\int_{0}^{2} \sin ^{2} x d x
$$

using $n=40$ points?

$$
\text { 1. } \frac{2^{3}}{24 \cdot 40^{2}} \quad \text { 4. } \frac{2^{3}}{24 \cdot 40}
$$

2. $\frac{2^{3}}{12 \cdot 40^{2}}$
3. $\frac{2^{2}}{24 \cdot 40^{2}}$
4. $\frac{1}{24 \cdot 40^{2}}$
5. none of the above

Question 1

What is the maximum possible absolute error if the Midpoint rule is used to approximate

$$
\int_{0}^{2} \sin ^{2} x d x
$$

using $n=40$ points?

$$
\begin{array}{ll}
\text { 1. } \frac{2^{3}}{24 \cdot 40^{2}} & \text { 4. }
\end{array} \frac{2^{3}}{24 \cdot 40}+\begin{array}{ll}
\\
\text { 2. } \frac{2^{3}}{12 \cdot 40^{2}} & \text { 5. }
\end{array} \frac{2^{2}}{24 \cdot 40^{2}}
$$

3. $\frac{1}{24 \cdot 40^{2}}$
4. none of the above

Question 2

What is the maximum possible absolute error if Simpson's rule is used to approximate

$$
\int_{0}^{2} \sin ^{2} x d x
$$

using $n=40$ points?

1. $\frac{2^{4}}{180 \cdot 40^{4}}$
2. $\frac{2^{4}}{180 \cdot 20^{4}}$
3. $\frac{2^{4}}{180 \cdot 40^{3}}$
4. $\frac{2^{2}}{24 \cdot 40^{2}}$
5. $\frac{1}{180 \cdot 40^{4}}$
6. none of the above

Question 2

What is the maximum possible absolute error if Simpson's rule is used to approximate

$$
\int_{0}^{2} \sin ^{2} x d x
$$

using $n=40$ points?

1. $\frac{2^{4}}{180 \cdot 40^{4}}$
2. $\frac{2^{4}}{180 \cdot 20^{4}}$
3. $\frac{2^{4}}{180 \cdot 40^{3}}$
4. $\frac{2^{2}}{24 \cdot 40^{2}}$
5. $\frac{1}{180 \cdot 40^{4}}$
6. none of the above
