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It is possible to fill a book with trigonometric identities.

However, by far the most important is:

2

cos”“ x + sin2

r=1
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It is possible to fill a book with trigonometric identities.

However, by far the most important is:

2

cos”“ x + sin2

r=1

This gives rise to the expressions

cos®r = 1 — sin? 2 2

r and sin“z=1-—cos“x
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It is possible to fill a book with trigonometric identities.

However, by far the most important is:

2 2

cos“x+sm x=1

This gives rise to the expressions

2

cos’r=1—sin?z and sin?z =1—cos’z

From these we get

cosz =V1—sin?z and sinz = V1= cos2x

Stewart Section 7.2 — p. 1/1
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COST = \/1 —sin’z and sinz = \/1 — cos?x

The above expressions can be used to turn any expression
Involving cos z INnto an equivalent in terms of sin x, and
vice-versa.

Stewart Section 7.2 — n. 2/]
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COST = \/1 —sin’z and sinz = \/1 — cos?x

The above expressions can be used to turn any expression

Involving cos z INnto an equivalent in terms of sin x, and
vice-versa.

One reason you might need to do this is to evaluate an

integral like
/sin3 T

Stewart Section 7.2 — n. 2/]
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Using the identity sin® z = 1 — cos® z, we can write the

Integral as
/singaj = /(1 — cos” x) sinx dx

Stewart Section 7.2 — p. 3/1
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Using the identity sin® z = 1 — cos® z, we can write the

Integral as
/singaj = /(1 — cos” x) sinx dx

If we let v = cos z, then

d_u
dx

— —sinx SO —du=-sinx dx
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Using the identity sin® z = 1 — cos® z, we can write the

Integral as
/singaj = /(1 — cos” x) sinx dx

If we let v = cos z, then

d_u
dx

— —sinx SO —du=-sinx dx

Now on substitution the integral becomes

/SiHBdLIZ:/(l—COSQQZ’)SiHZC da::—/(l—uQ) du

Stewart Section 7.2 — n. 3/1
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The result is:
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In general, this technique is useful for integrals of the form

/ sin” z cos" x dx

Stewart Section 7.2 — pn. 5/1
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In general, this technique is useful for integrals of the form
/ sin” x cos”" x dx

There are three special cases to consider, depending on
whether m and n are even or odd.

Stewart Section 7.2 — p. 5/1
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/ sin” x cos" x dx

Case 1: m Is odd, that is, m = 2k + 1 for some natural
number k

Stewart Section 7.2 — p. 6/]
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/ sin” x cos" x dx

Case 1: m Is odd, that is, m = 2k + 1 for some natural
number k

In this case write the integral as

/ sinZft ¢ cos™ ¢ dx = / sinZ® ¢ cos™ x sinzx dz

Stewart Section 7.2 — n. 6/]
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/ sin” x cos" x dx

Case 1: m Is odd, that is, m = 2k + 1 for some natural
number k

In this case write the integral as

/ sinZft ¢ cos™ ¢ dx = / sinZ® ¢ cos™ x sinzx dz

Now substitute

(1 —cos?z)® for sin®

Stewart Section 7.2 — p. 6/]
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The result is:

/(1 — cos?z)¥ cos™ & sinx dw
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The result is:
/(1 — cos® z)¥ cos ¢ sinz dx
Now let
du , .
u=cosxr SO — = —sinx and — du =sinx dx

dx

Stewart Section 7.2 — n. 7/]
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The result is:
/(1 — cos® z)¥ cos ¢ sinz dx
Now let
du , .
u =cosxr SO . — —sinz and — du =sinz dx
T

On substitution the integral becomes

/sinma:cos”a: dr = —/(1 — uH)Fu™ du

Stewart Section 7.2 — n. 7/]
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The result is:
/(1 — cos® z)¥ cos ¢ sinz dx
Now let
du , .
u =cosxr SO . — —sinz and — du =sinz dx
T

On substitution the integral becomes

/sinmajcos”a: dr = —/(1 — uH)Fu™ du

This can be either expanded and integrated as a
polynomial, or integrated by parts.

Stewart Section 7.2 — n. 7/]
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/ sin” x cos" x dx

Case 2: nis odd, that is, n = 2k + 1 for some natural
number k

Stewart Section 7.2 — p. 8/1
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/ sin” x cos" x dx

Case 2: nis odd, that is, n = 2k + 1 for some natural
number k

In this case write the integral as

/sinm rcosZitl ¢ dy = /sinm r cos? » cosx dx

Stewart Section 7.2 — p. 8/1
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/ sin” x cos" x dx

Case 2: nis odd, that is, n = 2k + 1 for some natural
number k

In this case write the integral as

/sinm rcosZitl ¢ dy = /sinm r cos? » cosx dx

Now substitute

(1 —sin®z)* for cos®*

Stewart Section 7.2 — p. 8/1
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The result is:

/sinm z(1 —sin® z)* cos = dx
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The result is:
/sinm z(1 — sin® z)* cos x dz

Now let
du

u=sinxr SO d—zcosw and du = cosz dx
T

Stewart Section 7.2 — p. 9/1
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The result is:
/sinm z(1 — sin® z)* cos x dz
Now let
, du
u=sinxr SO . — cosx and du = cosx dx
T

On substitution the integral becomes

/sinma:cosnaz dr = —/um(l—uz)k du

Stewart Section 7.2 — p. 9/1
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The result is:
/sinm z(1 — sin® z)* cos x dz
Now let
, du
u=sinxr SO . — cosx and du = cosx dx
T

On substitution the integral becomes

/sinma:cosnaz dr = —/um(l—uz)]‘C du

This can be either expanded and integrated as a
polynomial, or integrated by parts.

Stewart Section 7.2 — n. 9/1



Trigonometric | dentities

/ sin” x cos" x dx

Case 3. m and n are both even: m = 25 and n = 2k

Stewart Section 7.2 — p. 10/1
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/ sin” x cos" x dx

Case 3. m and n are both even: m = 25 and n = 2k
In this case write the integral as

/ sin? x cos? x dx

Stewart Section 7.2 — p. 10/1
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/ sin” x cos" x dx

Case 3. m and n are both even: m = 25 and n = 2k
In this case write the integral as

/ sin? x cos? x dx

Now substitute

9 1

1
sin“ x = 5(1 —cos2z) and cos®z = 5(1 + cos 2x)

Stewart Section 7.2 — p. 10/1
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The result is:

1 1
/ 5(1 — COos 2$)J§(1 + cos 2z)" da
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The result is:
1 1 )
5(1 —COSQZC)J§(1—|—COS2ZE) dx

This can be either expanded and integrated as a
polynomial, or integrated by parts.

Stewart Section 7.2 — p. 11/1
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