
Integration by Parts
Last semester we saw that the chain rule

d

dx
f(g(x)) = f ′(g(x))g′(x)

gave rise to the substitution rule for integration.
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Integration by Parts
Last semester we saw that the chain rule

d

dx
f(g(x)) = f ′(g(x))g′(x)

gave rise to the substitution rule for integration.

Writing in differential form,

d f(g(x)) = f ′(g(x))g′(x) dx

Integrating both sides produces

f(g(x)) =

∫
f ′(g(x))g′(x) dx
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Integration by Parts
Now we consider another differentiation formula,

d

dx
(fg) = fg′ + gf ′
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Integration by Parts
Now we consider another differentiation formula,

d

dx
(fg) = fg′ + gf ′

Writing in differential form,

d (fg) = fg′dx + gf ′dx

Integrating both sides produces

fg =

∫
fg′dx +

∫
gf ′dx
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Integration by Parts
We can rearrange this to produce the formula:

∫
fg′dx = fg −

∫
gf ′dx

which is known as integration by parts
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Integration by Parts
We can rearrange this to produce the formula:

∫
fg′dx = fg −

∫
gf ′dx

which is known as integration by parts

As with the substitution rule, the integrand has to have a
specific form.

When it does, we can substitute the expression on the right
for the integral on the left.

Hopefully, the integral on the right is easier to evaluate than
the one on the left.
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Example 1
Consider the integral

∫
x cos x dx
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Example 1
Consider the integral

∫
x cos x dx

We want to identify f and g corresponding to the left hand
side of: ∫

fg′dx = fg −

∫
gf ′dx
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Example 1
Consider the integral

∫
x cos x dx

We want to identify f and g corresponding to the left hand
side of: ∫

fg′dx = fg −

∫
gf ′dx

If we let f(x) = x and g(x) = sin x, we have:

f(x) = x f ′(x) = 1

g(x) = sin x g′(x) = cos x
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Example 1
Now we substitute these values:

f(x) = x f ′(x) = 1

g(x) = sin x g′(x) = cos x

into the formula
∫

fg′dx = fg −

∫
gf ′dx
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Example 1
Now we substitute these values:

f(x) = x f ′(x) = 1

g(x) = sin x g′(x) = cos x

into the formula
∫

fg′dx = fg −

∫
gf ′dx

The result is:
∫

x cos x dx = x sin x −

∫
sin x dx
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Example 1
Now we substitute these values:

f(x) = x f ′(x) = 1

g(x) = sin x g′(x) = cos x

into the formula
∫

fg′dx = fg −

∫
gf ′dx

The result is:
∫

x cos x dx = x sin x −

∫
sin x dx

The integral on the right is − cos x
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Example 1
With this substitution,

∫
x cos x dx = x sin x −

∫
sin x dx

becomes ∫
x cos x dx = x sin x + cos x
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Example 1
With this substitution,

∫
x cos x dx = x sin x −

∫
sin x dx

becomes ∫
x cos x dx = x sin x + cos x

The technique worked because
∫

sin x dx is easier to evaluate than

∫
x cos x dx
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Example 2
Now consider ∫

xex dx
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Example 2
Now consider ∫

xex dx

We want to identify this integral as
∫

fg′dx

for some functions f and g.
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Example 2
We will end up evaluating

∫
gf ′ dx

so we want an f that similifies when differentated, and a g

that is easy to integrate.
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Example 2
We will end up evaluating

∫
gf ′ dx

so we want an f that similifies when differentated, and a g

that is easy to integrate.

In this case, good choices are:

f(x) = x and g(x) = ex
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Example 2

Then g′ = ex, f ′ = 1, and the integration by parts formula
∫

fg′dx = fg −

∫
gf ′ dx

becomes ∫
xex dx = xex

−

∫
ex

· 1 dx

= xex
− ex
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Example 2

Then g′ = ex, f ′ = 1, and the integration by parts formula
∫

fg′dx = fg −

∫
gf ′ dx

becomes ∫
xex dx = xex

−

∫
ex

· 1 dx

= xex
− ex

Again, the integral on the right is easier to evaluate than the
one on the left.
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Example 3
Like L’Hopital’s rule, sometimes more than one application
of the integration by parts formula is required.
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Example 3
Like L’Hopital’s rule, sometimes more than one application
of the integration by parts formula is required.

This time consider ∫
x2ex dx
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Example 3
Like L’Hopital’s rule, sometimes more than one application
of the integration by parts formula is required.

This time consider ∫
x2ex dx

Let f(x) = x2 and g(x) = g′(x) = ex. Then the integration by
parts formula gives:

∫
x2ex dx = x2ex

−

∫
ex

· 2x dx

= x2ex
− 2

∫
xex dx
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Example 3
Like L’Hopital’s rule, sometimes more than one application
of the integration by parts formula is required.

This time consider ∫
x2ex dx

Let f(x) = x2 and g(x) = g′(x) = ex. Then the integration by
parts formula gives:

∫
x2ex dx = x2ex

−

∫
ex

· 2x dx

= x2ex
− 2

∫
xex dx

As we saw, the integral on the right is xex
− ex.
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Example 3
With this substitution, the result is

∫
x2ex dx = x2ex

− 2(xex
− ex)

or ∫
x2ex dx = x2ex

− 2xex + 2ex
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Example 3
With this substitution, the result is

∫
x2ex dx = x2ex

− 2(xex
− ex)

or ∫
x2ex dx = x2ex

− 2xex + 2ex

Depending on the integrand, more than two applications of
the integration by parts formula may be required.
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The Tabular Method
A simple computational algorithm exists for repeated
integration by parts.
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The Tabular Method
A simple computational algorithm exists for repeated
integration by parts.
Suppose we want to evaluate an integral of the form

∫
f(x)g(x) dx

Identify f and g, then create a table of the form:
+ g

∫
fdx +g

∫
fdx

− g′
∫ ∫

f(dx)2 −g′
∫ ∫

f(dx)2

+ g′′
∫ ∫ ∫

f(dx)3 g′′
∫ ∫ ∫

f(dx)3

− g′′′
∫ ∫ ∫ ∫

f(dx)4 g′′′
∫ ∫ ∫ ∫

f(dx)4

...
...

...
...
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The Tabular Method

+ g
∫

fdx +g
∫

fdx

− g′
∫ ∫

f(dx)2 −g′
∫ ∫

f(dx)2

+ g′′
∫ ∫ ∫

f(dx)3 +g′′
∫ ∫ ∫

f(dx)3

− g′′′
∫ ∫ ∫ ∫

f(dx)4 −g′′′
∫ ∫ ∫ ∫

f(dx)4

...
...

...
...

The left column of the table starts with + and alternates
signs

The next column contains succesive derivatives of g

The next column contains successive integrals of f

The last column contains the product of the second and
third columns.
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The Tabular Method

∫
x2ex dx
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The Tabular Method

∫
x2ex dx

Identify f = ex and g = x2, and create the table:

+ x2
∫

exdx +x2ex

− 2x
∫ ∫

ex(dx)2 −2xex

+ 2
∫ ∫ ∫

ex(dx)3 +2ex

− 0
∫ ∫ ∫ ∫

ex(dx)4 0
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The Tabular Method

∫
x2ex dx

Identify f = ex and g = x2, and create the table:

+ x2
∫

exdx +x2ex

− 2x
∫ ∫

ex(dx)2 −2xex

+ 2
∫ ∫ ∫

ex(dx)3 +2ex

− 0
∫ ∫ ∫ ∫

ex(dx)4 0

Adding the entries in the rightmost column we obtain:

x2ex
− 2xex + 2ex
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The Tabular Method

Now consider
∫

x3 sin x dx
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The Tabular Method

Now consider
∫

x3 sin x dx

The table is:
+ x3

− cos x −x3 cos x

− 3x2
− sin x +3x2 sin x

+ 6x cos x +6x cos x

− 6 sin x −6 sin x

+ 0 − cos x 0
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The Tabular Method

Now consider
∫

x3 sin x dx

The table is:
+ x3

− cos x −x3 cos x

− 3x2
− sin x +3x2 sin x

+ 6x cos x +6x cos x

− 6 sin x −6 sin x

+ 0 − cos x 0

Adding the entries in the rightmost column we obtain:

−x3 cos x + 3x2 sin x + 6x cos x − 6 sin x
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Question 1
Evaluate the integral ∫

xe−xdx

1. xe−x + e−x 4. xe−x
− ex

2. −xe−x
− e−x 5. −xex + e−x

3. −xe−x + e−x 6. none of the above
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Question 1
Evaluate the integral ∫

xe−xdx

1. xe−x + e−x 4. xe−x
− ex

2. −xe−x
− e−x 5. −xex + e−x

3. −xe−x + e−x 6. none of the above

2. −xe−x
− e−x
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The Tabular Method
For the previous example, the tabular method gives:

∫
xe−x dx
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The Tabular Method
For the previous example, the tabular method gives:

∫
xe−x dx

The table is:
+ x −e−x

−xe−x

− 1 e−x
−e−x

+ 0 −e−x 0
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The Tabular Method
For the previous example, the tabular method gives:

∫
xe−x dx

The table is:
+ x −e−x

−xe−x

− 1 e−x
−e−x

+ 0 −e−x 0

Adding the entries in the rightmost column we obtain:

−xe−x
− e−x
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Question 2
Evaluate the integral

∫
x4 cos x dx

1. x4 sin x − 4x3 cos x − 12x2 sin x − 24x cos x + 24 sin x

2. x4 sin x + 4x3 cos x + 12x2 sin x − 24x cos x + 24 sin x

3. x4 sin x + 4x3 cos x − 12x2 sinx − 24x cos x + 24 sin x

4. x4 sin x − 4x3 cos x + 12x2 sinx − 24x cos x − 24 sin x

5. x4 sin x − 4x3 cos x − 12x2 sin x + 24x cos x + 24 sin x

6. none of the above
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Question 2
Evaluate the integral

∫
x4 cos x dx

1. x4 sin x − 4x3 cos x − 12x2 sin x − 24x cos x + 24 sin x

2. x4 sin x + 4x3 cos x + 12x2 sin x − 24x cos x + 24 sin x

3. x4 sin x + 4x3 cos x − 12x2 sinx − 24x cos x + 24 sin x

4. x4 sin x − 4x3 cos x + 12x2 sinx − 24x cos x − 24 sin x

5. x4 sin x − 4x3 cos x − 12x2 sin x + 24x cos x + 24 sin x

6. none of the above

3. x4 sinx + 4x3 cos x − 12x2 sin x − 24x cos x + 24 sin x
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The Tabular Method
For the previous example, the tabular method gives:

∫
x4 cos x dx
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The Tabular Method
For the previous example, the tabular method gives:

∫
x4 cos x dx

The table is:
+ x4 sin x x4 sin x

− 4x3
− cos x 4x3 cos x

+ 12x2
− sin x −12x2 sin x

− 24x cos x −24x cos x

+ 24 sin x 24 sin x
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The Tabular Method
For the previous example, the tabular method gives:

∫
x4 cos x dx

The table is:
+ x4 sin x x4 sin x

− 4x3
− cos x 4x3 cos x

+ 12x2
− sin x −12x2 sin x

− 24x cos x −24x cos x

+ 24 sin x 24 sin x

Adding the entries in the rightmost column we obtain:

(x4
− 12x2 + 24) sin x + (4x3

− 24x) cos x
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Question 3
Evaluate the integral

∫
x + 2

3
√

2x + 1
dx

1. 3

4
(x + 2)(2x + 1)2/3

−
9

40
(2x + 1)5/3

2. −
3

4
(x + 2)(2x + 1)2/3 + 9

40
(2x + 1)5/3

3. −
3

4
(x + 2)(2x + 1)2/3

−
9

40
(2x + 1)5/3

4. 1

4
(x + 2)(2x + 1)2/3 + 6

40
(2x + 1)5/3

5. −
1

4
(x + 2)(2x + 1)2/3

−
6

40
(2x + 1)5/3

6. none of the above
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Question 3
Evaluate the integral

∫
x + 2

3
√

2x + 1
dx

1. 3

4
(x + 2)(2x + 1)2/3

−
9

40
(2x + 1)5/3

2. −
3

4
(x + 2)(2x + 1)2/3 + 9

40
(2x + 1)5/3

3. −
3

4
(x + 2)(2x + 1)2/3

−
9

40
(2x + 1)5/3

4. 1

4
(x + 2)(2x + 1)2/3 + 6

40
(2x + 1)5/3

5. −
1

4
(x + 2)(2x + 1)2/3

−
6

40
(2x + 1)5/3

6. none of the above

1. 3

4
(x + 2)(2x + 1)2/3

−
9

40
(2x + 1)5/3

Stewart Section 7.1 – p. 20/25



The Tabular Method
Write the integrand as:

(x + 2)(2x + 1)−1/3
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The Tabular Method
Write the integrand as:

(x + 2)(2x + 1)−1/3

The table is:
+ x + 2 3

4
(2x + 1)2/3 3

4
(x + 2)(2x + 1)2/3

− 1 9

40
(2x + 1)5/3

−
9

40
(2x + 1)5/3
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The Tabular Method
Write the integrand as:

(x + 2)(2x + 1)−1/3

The table is:
+ x + 2 3

4
(2x + 1)2/3 3

4
(x + 2)(2x + 1)2/3

− 1 9

40
(2x + 1)5/3

−
9

40
(2x + 1)5/3

Adding the entries in the rightmost column we obtain:

3

4
(x + 2)(2x + 1)2/3

−
9

40
(2x + 1)5/3
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The Tabular Method - Remainders
In all of the examples of the tabular method so far, the
process of building the table stopped when the next entry in
the derivatives column became zero (meaning all the
entries in the last column would be zero from that row on).
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The Tabular Method - Remainders
In all of the examples of the tabular method so far, the
process of building the table stopped when the next entry in
the derivatives column became zero (meaning all the
entries in the last column would be zero from that row on).

Actually we can stop at any point, even if the next derivative
is not zero.

If the next derivative is not zero, the final expression will
contain an integral remainder term.
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The Tabular Method - Remainders
In all of the examples of the tabular method so far, the
process of building the table stopped when the next entry in
the derivatives column became zero (meaning all the
entries in the last column would be zero from that row on).

Actually we can stop at any point, even if the next derivative
is not zero.

If the next derivative is not zero, the final expression will
contain an integral remainder term.

The remainder term is always the integral of the product of:

The next entry in the derivative column (with the
appropriate sign from the first column)

The current entry in the integral column
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The Tabular Method - Remainders
Example: Carry out the tabular method to evaluate

∫
e−x

x
dx

using only the first two rows of the table and the remainder.
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The Tabular Method - Remainders
Example: Carry out the tabular method to evaluate

∫
e−x

x
dx

using only the first two rows of the table and the remainder.

The first two rows of the table are:

+ x−1
−e−x

−x−1e−x

− −x−2 e−x x−2e−x
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The Tabular Method - Remainders
Now fill in the first two columns of the next row:

+ x−1
−e−x

−x−1e−x

− −x−2 e−x x−2e−x

+ 2x−3
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The Tabular Method - Remainders
Now fill in the first two columns of the next row:

+ x−1
−e−x

−x−1e−x

− −x−2 e−x x−2e−x

+ 2x−3

The remainder term is the third entry in the derivative
column times the second entry in the integral column:

∫
2x−3e−x dx
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The Tabular Method - Remainders

+ x−1
−e−x

−x−1e−x

− −x−2 e−x x−2e−x

+ 2x−3
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The Tabular Method - Remainders

+ x−1
−e−x

−x−1e−x

− −x−2 e−x x−2e−x

+ 2x−3

The final result is the sum of the entries in the last column,
plus the remainder:

∫
e−x

x
dx = −

e−x

x
+

e−x

x2
+

∫
2e−x

x3
dx
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