Suppose we want to find the volume obtained by revolving the parabola $y=x^2$ between y=0 and y=1 about the y-axis.

Suppose we want to find the volume obtained by revolving the parabola $y=x^2$ between y=0 and y=1 about the y-axis.

We can use the circular disk method to revolve the graph of a function about the x-axis, but how do we handle this situation?

Suppose we want to find the volume obtained by revolving the parabola $y=x^2$ between y=0 and y=1 about the y-axis.

We can use the circular disk method to revolve the graph of a function about the x-axis, but how do we handle this situation?

An obvious solution is to just interchange the roles of x and y. The graph of $y=x^2$ is identical to the graph of $x=\sqrt{y}$

So we can just relabel the axes and consider rotating $y = \sqrt{x}$ about the x-axis between x = 0 and x = 1.

Suppose we want to find the volume obtained by revolving the parabola $y=x^2$ between y=0 and y=1 about the y-axis.

We can use the circular disk method to revolve the graph of a function about the x-axis, but how do we handle this situation?

An obvious solution is to just interchange the roles of x and y. The graph of $y=x^2$ is identical to the graph of $x=\sqrt{y}$

So we can just relabel the axes and consider rotating $y = \sqrt{x}$ about the x-axis between x = 0 and x = 1.

This works as long as we can convert the function y = f(x) into x = g(y), but this may not be easy.

An alternative is the cylindrical shells method.

Consider two cylinders with a common center axis, both with height h

An alternative is the cylindrical shells method.

Consider two cylinders with a common center axis, both with height \boldsymbol{h}

Suppose the smaller one has radius r_1 and the larger has radius r_2

Then the volumes are, respectively,

$$V_1 = \pi r_1^2 h$$
 and $V_2 = \pi r_2^2 h$

An alternative is the cylindrical shells method.

Consider two cylinders with a common center axis, both with height h

Suppose the smaller one has radius r_1 and the larger has radius r_2

Then the volumes are, respectively,

$$V_1=\pi r_1^2 h$$
 and $V_2=\pi r_2^2 h$

The difference in the two volumes is:

$$V_2 - V_1 = \pi h(r_2^2 - r_1^2) = \pi h(r_2 + r_1)(r_2 - r_1)$$

We can simplify the expression

$$V_2 - V_1 = \pi h(r_2 + r_1)(r_2 - r_1)$$

by letting

$$\Delta r = r_2 - r_1$$
 and $r = \frac{r_2 + r_1}{2}$

We can simplify the expression

$$V_2 - V_1 = \pi h(r_2 + r_1)(r_2 - r_1)$$

by letting

$$\Delta r = r_2 - r_1$$
 and $r = \frac{r_2 + r_1}{2}$

Then by substitution we get

$$V_2 - V_1 = 2\pi r h \Delta r$$

We can simplify the expression

$$V_2 - V_1 = \pi h(r_2 + r_1)(r_2 - r_1)$$

by letting

$$\Delta r = r_2 - r_1$$
 and $r = \frac{r_2 + r_1}{2}$

Then by substitution we get

$$V_2 - V_1 = 2\pi r h \Delta r$$

This is the volume of a cylindrical shell with height h, average radius r, and thickness Δr .

Question 1

The integral representing the area under the curve $y=x^2$ from x=0 to x=1 revolved around the y-axis is:

1.
$$\int_0^1 2\pi x^3 dx$$

4.
$$\int_0^1 \pi x^3 dx$$

2.
$$\int_0^1 2\pi x^2 dx$$

5.
$$\int_0^1 \pi x^2 dx$$

3.
$$\int_0^1 2\pi x dx$$

6. none of the above

Question 1

The integral representing the area under the curve $y=x^2$ from x=0 to x=1 revolved around the y-axis is:

1.
$$\int_0^1 2\pi x^3 dx$$

4.
$$\int_0^1 \pi x^3 dx$$

2.
$$\int_0^1 2\pi x^2 dx$$

5.
$$\int_0^1 \pi x^2 dx$$

3.
$$\int_0^1 2\pi x dx$$

6. none of the above

1.
$$\int_0^1 2\pi x^3 dx$$