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Suppose we want to find the volume obtained by revolving

the parabola y = z? between y = 0 and y = 1 about the
y-axis.

We can use the circular disk method to revolve the graph of

a function about the z-axis, but how do we handle this
situation?

An obvious solution is to just interchange the roles of x and
y. The graph of y = z* is identical to the graph of z = ,/y

So we can just relabel the axes and consider rotating
y = +/x about the z-axis between xr =0 and z = 1.

This works as long as we can convert the function y = f(x)
Into x = ¢g(y), but this may not be easy.

Stewart Section 6.3 -=p. 1
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An alternative is the cylindrical shells method.

Consider two cylinders with a common center axis, both
with height h

Suppose the smaller one has radius r; and the larger has
radius r-

Then the volumes are, respectively,

Vi =nrih and Vi =mr3h

The difference in the two volumes Is:

Vo — V] = 7Th(7“% — r%) = wh(rg +r1)(re —r1)

Stewart Section 6.3 -=p. 2
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We can simplify the expression

Vo — V] = 7Th(7“2 -+ 7“1)(7“2 — 7“1)

by letting

ro + 1T
Ar=ro—ry and r = 22 !

Then by substitution we get

Vo — Vi = 2nrhAr

This is the volume of a cylindrical shell with height A,
average radius r, and thickness Ar.

tewart Sect

ion6.3—=p. 3



Question 1

The integral representing the area under the curve y = 22
from x = 0 to x = 1 revolved around the y-axis Is:

1. fol Irasdr 4. fol rridr

2. fol Irxdr 5. fol rrldr

3. [ 2nxde 6. none of the above

Stewart Section 6.3 -=p. 4



Question 1

The integral representing the area under the curve y = 22

from x = 0 to x = 1 revolved around the y-axis Is:

1. fol 2raSdr
2. fol 2wl dr

3. fol 2mxdx

1. fol oraSdr

4.

.

6.

fol rridr
I 92
fo Txldx

none of the above

Stewart Section 6.3 =p. 4
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