Areas Between Curves

Suppose we are interested in the area between the curves

$$
f(x)=4-x^{2} \quad \text { and } \quad g(x)=x^{3}-x^{2}-2 x
$$

Areas Between Curves

We need to be careful in this case because f is not always larger than g.
If our interval of integration is $[0,2], f \geq g$, so we can just use

$$
A=\int_{0}^{2}(f(x)-g(x)) d x
$$

Areas Between Curves

If our interval of integration is, say $[0,2.5]$, we have to use the formula

$$
A=\int_{0}^{2.5}|f(x)-g(x)| d x
$$

Areas Between Curves

If our interval of integration is, say $[0,2.5]$, we have to use the formula

$$
A=\int_{0}^{2.5}|f(x)-g(x)| d x
$$

The reason is that $f \geq g$ on [0, 2], but $g \geq f$ on [2, 2.5]

Areas Between Curves

So we have to split the interval into two parts, and write

$$
A=\int_{0}^{2.5}|f(x)-g(x)| d x
$$

as

$$
A=\int_{0}^{2}(f(x)-g(x)) d x+\int_{2}^{2.5}(g(x)-f(x)) d x
$$

Areas Between Curves

As a practical matter, we might also consider that since

$$
\int_{a}^{b}(f(x)-g(x)) d x=-\int_{a}^{b}(g(x)-f(x)) d x
$$

we can avoid two different integrations by using

$$
A=\int_{0}^{2}(f(x)-g(x)) d x-\int_{2}^{2.5}(f(x)-g(x)) d x
$$

Areas Between Curves

The difficult part of this type of problem is determining where the graphs of f and g cross.

Areas Between Curves

The difficult part of this type of problem is determining where the graphs of f and g cross.
One technique for discovering this is to graph the function $(f-g)(x)$ on the interval of interest. In this case, we get

Areas Between Curves

If the graph is always on or above the x-axis in the entire range of integration, we don't need to split the integral.

Areas Between Curves

If the graph is always on or above the x-axis in the entire range of integration, we don't need to split the integral.
If the graph has values both above and below the x-axis in the range of integration, then we will have to split the integral.

Areas Between Curves

If the graph is always on or above the x-axis in the entire range of integration, we don't need to split the integral.
If the graph has values both above and below the x-axis in the range of integration, then we will have to split the integral.
If the graph is always on or below the x-axis in the range of integration, we do not have to split the integral, but we need to integrate $(g-f)(x)$ instead of $(f-g)(x)$

Areas Between Curves

Example 1: Find the area between the curves $f(x)=4-x^{2}$ and $g(x)=x^{3}-x^{2}-2 x$ between $x=0$ and $x=2$.

Areas Between Curves

Example 1: Find the area between the curves $f(x)=4-x^{2}$ and $g(x)=x^{3}-x^{2}-2 x$ between $x=0$ and $x=2$.

Plot $f(x)-g(x)$ on this interval and note that $f(x) \geq g(x)$ on $[0,2]$.

Areas Between Curves

$$
f(x)-g(x)=\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)=-x^{3}+2 x+4
$$

is nonnegative on $[0,2]$, so we can simply integrate $(f-g)$ over this interval.

Areas Between Curves

$$
f(x)-g(x)=\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)=-x^{3}+2 x+4
$$

is nonnegative on $[0,2]$, so we can simply integrate $(f-g)$ over this interval.

$$
A=\int_{0}^{2}\left[\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)\right] d x
$$

Areas Between Curves

$$
f(x)-g(x)=\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)=-x^{3}+2 x+4
$$

is nonnegative on $[0,2]$, so we can simply integrate $(f-g)$ over this interval.

$$
\begin{gathered}
A=\int_{0}^{2}\left[\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)\right] d x \\
A=\int_{0}^{2}\left(-x^{3}+2 x+4\right) d x=\left[-\frac{x^{4}}{4}+x^{2}+4 x\right]_{0}^{2}
\end{gathered}
$$

Areas Between Curves

$$
f(x)-g(x)=\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)=-x^{3}+2 x+4
$$

is nonnegative on $[0,2]$, so we can simply integrate $(f-g)$ over this interval.

$$
\begin{gathered}
A=\int_{0}^{2}\left[\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)\right] d x \\
A=\int_{0}^{2}\left(-x^{3}+2 x+4\right) d x=\left[-\frac{x^{4}}{4}+x^{2}+4 x\right]_{0}^{2} \\
=\left[-\frac{16}{4}+4+8\right]-\left[-\frac{0}{4}+0^{2}+0\right]=8
\end{gathered}
$$

Areas Between Curves

Example 2: Find the area between the curves $f(x)=4-x^{2}$ and $g(x)=x^{3}-x^{2}-2 x$ between $x=0$ and $x=3$.

Areas Between Curves

Example 2: Find the area between the curves $f(x)=4-x^{2}$ and $g(x)=x^{3}-x^{2}-2 x$ between $x=0$ and $x=3$.

Plot $f(x)-g(x)$ on this interval and note that $f(x) \geq g(x)$ on $[0,2], g(x) \geq f(x)$ on $[2,3]$.

Areas Between Curves

Example 2: Find the area between the curves $f(x)=4-x^{2}$ and $g(x)=x^{3}-x^{2}-2 x$ between $x=0$ and $x=3$.

Plot $f(x)-g(x)$ on this interval and note that $f(x) \geq g(x)$ on $[0,2], g(x) \geq f(x)$ on $[2,3]$. The sign of $(f-g)(x)$ changes at $x=2$.

Areas Between Curves

This time we have to use the formula

$$
A=\int_{0}^{3}|f(x)-g(x)| d x
$$

Areas Between Curves

This time we have to use the formula

$$
A=\int_{0}^{3}|f(x)-g(x)| d x
$$

which means we have to split the integral into segments where the sign of $(f-g)(x)$ does not change.

Areas Between Curves

This time we have to use the formula

$$
A=\int_{0}^{3}|f(x)-g(x)| d x
$$

which means we have to split the integral into segments where the sign of $(f-g)(x)$ does not change.
In this case the intervals are:

- $[0,2]$ where $f(x) \geq g(x)$
- $[2,3]$ where $g(x) \geq f(x)$
so
$A=\int_{0}^{2}\left[\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)\right] d x+\int_{2}^{3}\left[\left(x^{3}-x^{2}-2 x\right)-\left(x^{2}-4\right)\right] d x$

Areas Between Curves

By collecting terms,
$A=\int_{0}^{2}\left[\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)\right] d x+\int_{2}^{3}\left[\left(x^{3}-x^{2}-2 x\right)-\left(x^{2}-4\right)\right] d x$
can be written as

$$
A=\int_{0}^{2}\left(-x^{3}+2 x+4\right) d x+\int_{2}^{3}\left(x^{3}-2 x-4\right) d x
$$

Areas Between Curves

By collecting terms,
$A=\int_{0}^{2}\left[\left(4-x^{2}\right)-\left(x^{3}-x^{2}-2 x\right)\right] d x+\int_{2}^{3}\left[\left(x^{3}-x^{2}-2 x\right)-\left(x^{2}-4\right)\right] d x$
can be written as

$$
A=\int_{0}^{2}\left(-x^{3}+2 x+4\right) d x+\int_{2}^{3}\left(x^{3}-2 x-4\right) d x
$$

After integration this is

$$
\left[-\frac{x^{4}}{4}+x^{2}+4 x\right]_{0}^{2}+\left[\frac{x^{4}}{4}-x^{2}-4 x\right]_{2}^{3}
$$

Areas Between Curves

Evaluating at the endpoints we have

$$
\begin{gathered}
{\left[-\frac{16}{4}+4+8\right]-\left[-\frac{0}{4}+0^{2}+0\right]} \\
+\left[\frac{81}{4}-9-12\right]-\left[\frac{16}{4}-4-8\right] \\
=\frac{61}{4}
\end{gathered}
$$

Areas Between Curves

Evaluating at the endpoints we have

$$
\begin{gathered}
{\left[-\frac{16}{4}+4+8\right]-\left[-\frac{0}{4}+0^{2}+0\right]} \\
+\left[\frac{81}{4}-9-12\right]-\left[\frac{16}{4}-4-8\right] \\
=\frac{61}{4}
\end{gathered}
$$

