
Areas Between Curves
Suppose we are interested in the area between the curves

f(x) = 4 − x2 and g(x) = x3 − x2 − 2x
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Areas Between Curves

We need to be careful in this case because f is not always
larger than g.

If our interval of integration is [0, 2], f ≥ g, so we can just
use

A =

∫ 2

0

(f(x) − g(x)) dx
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Areas Between Curves

If our interval of integration is, say [0, 2.5], we have to use
the formula

A =

∫

2.5

0

|f(x) − g(x)| dx
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Areas Between Curves

If our interval of integration is, say [0, 2.5], we have to use
the formula

A =

∫

2.5

0

|f(x) − g(x)| dx

The reason is that f ≥ g on [0, 2], but g ≥ f on [2, 2.5]
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Areas Between Curves

So we have to split the interval into two parts, and write

A =

∫ 2.5

0

|f(x) − g(x)| dx

as

A =

∫

2

0

(f(x) − g(x)) dx +

∫

2.5

2

(g(x) − f(x)) dx
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Areas Between Curves

As a practical matter, we might also consider that since

∫

b

a

(f(x) − g(x)) dx = −

∫

b

a

(g(x) − f(x)) dx

we can avoid two different integrations by using

A =

∫ 2

0

(f(x) − g(x)) dx −

∫ 2.5

2

(f(x) − g(x)) dx
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Areas Between Curves
The difficult part of this type of problem is determining
where the graphs of f and g cross.
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Areas Between Curves
The difficult part of this type of problem is determining
where the graphs of f and g cross.
One technique for discovering this is to graph the function
(f − g)(x) on the interval of interest. In this case, we get
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Areas Between Curves

If the graph is always on or above the x-axis in the entire
range of integration, we don’t need to split the integral.
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Areas Between Curves

If the graph is always on or above the x-axis in the entire
range of integration, we don’t need to split the integral.

If the graph has values both above and below the x-axis in
the range of integration, then we will have to split the
integral.
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Areas Between Curves

If the graph is always on or above the x-axis in the entire
range of integration, we don’t need to split the integral.

If the graph has values both above and below the x-axis in
the range of integration, then we will have to split the
integral.

If the graph is always on or below the x-axis in the range of
integration, we do not have to split the integral, but we need
to integrate (g − f)(x) instead of (f − g)(x)
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Areas Between Curves
Example 1: Find the area between the curves f(x) = 4 − x2

and g(x) = x3 − x2 − 2x between x = 0 and x = 2.
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Areas Between Curves
Example 1: Find the area between the curves f(x) = 4 − x2

and g(x) = x3 − x2 − 2x between x = 0 and x = 2.

Plot f(x) − g(x) on this interval
and note that f(x) ≥ g(x) on [0, 2].
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Areas Between Curves

f(x) − g(x) = (4 − x2) − (x3 − x2 − 2x) = −x3 + 2x + 4

is nonnegative on [0, 2], so we can simply integrate (f − g)
over this interval.
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Areas Between Curves

f(x) − g(x) = (4 − x2) − (x3 − x2 − 2x) = −x3 + 2x + 4

is nonnegative on [0, 2], so we can simply integrate (f − g)
over this interval.

A =

∫

2

0

[(4 − x2) − (x3 − x2 − 2x)]dx
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Areas Between Curves

f(x) − g(x) = (4 − x2) − (x3 − x2 − 2x) = −x3 + 2x + 4

is nonnegative on [0, 2], so we can simply integrate (f − g)
over this interval.

A =

∫

2

0

[(4 − x2) − (x3 − x2 − 2x)]dx

A =

∫ 2

0

(−x3 + 2x + 4)dx =

[

−
x4

4
+ x2 + 4x

]2

0
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Areas Between Curves

f(x) − g(x) = (4 − x2) − (x3 − x2 − 2x) = −x3 + 2x + 4

is nonnegative on [0, 2], so we can simply integrate (f − g)
over this interval.

A =

∫

2

0

[(4 − x2) − (x3 − x2 − 2x)]dx

A =

∫ 2

0

(−x3 + 2x + 4)dx =

[

−
x4

4
+ x2 + 4x

]2

0

=

[

−
16

4
+ 4 + 8

]

−

[

−
0

4
+ 02 + 0

]

= 8
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Areas Between Curves
Example 2: Find the area between the curves f(x) = 4 − x2

and g(x) = x3 − x2 − 2x between x = 0 and x = 3.
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Areas Between Curves
Example 2: Find the area between the curves f(x) = 4 − x2

and g(x) = x3 − x2 − 2x between x = 0 and x = 3.

Plot f(x) − g(x) on this interval
and note that f(x) ≥ g(x) on [0, 2], g(x) ≥ f(x) on [2, 3].

Stewart Section 6.1 – p. 10/14



Areas Between Curves
Example 2: Find the area between the curves f(x) = 4 − x2

and g(x) = x3 − x2 − 2x between x = 0 and x = 3.

Plot f(x) − g(x) on this interval
and note that f(x) ≥ g(x) on [0, 2], g(x) ≥ f(x) on [2, 3].
The sign of (f − g)(x) changes at x = 2.
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Areas Between Curves
This time we have to use the formula

A =

∫ 3

0

|f(x) − g(x)| dx
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Areas Between Curves
This time we have to use the formula

A =

∫ 3

0

|f(x) − g(x)| dx

which means we have to split the integral into segments
where the sign of (f − g)(x) does not change.
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Areas Between Curves
This time we have to use the formula

A =

∫ 3

0

|f(x) − g(x)| dx

which means we have to split the integral into segments
where the sign of (f − g)(x) does not change.
In this case the intervals are:

[0, 2] where f(x) ≥ g(x)

[2, 3] where g(x) ≥ f(x)

so

A =

∫ 2

0

[(4−x2)−(x3−x2−2x)]dx+

∫ 3

2

[(x3−x2−2x)−(x2−4)]dx
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Areas Between Curves
By collecting terms,

A =

∫

2

0

[(4−x2)−(x3−x2−2x)]dx+

∫

3

2

[(x3−x2−2x)−(x2−4)]dx

can be written as

A =

∫ 2

0

(−x3 + 2x + 4)dx +

∫ 3

2

(x3 − 2x − 4)dx
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Areas Between Curves
By collecting terms,

A =

∫

2

0

[(4−x2)−(x3−x2−2x)]dx+

∫

3

2

[(x3−x2−2x)−(x2−4)]dx

can be written as

A =

∫ 2

0

(−x3 + 2x + 4)dx +

∫ 3

2

(x3 − 2x − 4)dx

After integration this is

[

−
x4

4
+ x2 + 4x

]2

0

+

[

x4

4
− x2 − 4x

]3

2
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Areas Between Curves
Evaluating at the endpoints we have

[

−
16

4
+ 4 + 8

]

−

[

−
0

4
+ 02 + 0

]

+

[

81

4
− 9 − 12

]

−

[

16

4
− 4 − 8

]

=
61

4

Stewart Section 6.1 – p. 13/14



Areas Between Curves
Evaluating at the endpoints we have

[

−
16
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+ 4 + 8
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−
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−
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4
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61
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