Suppose f and g are continuous, and $f(x) \ge g(x)$ for $a \le x \le b$.

Suppose f and g are continuous, and $f(x) \ge g(x)$ for $a \le x \le b$.

Then the area bounded:

- **•** above by the graph of f(x)
- **•** below by the graph of g(x)
- on the *left* by the vertical line x = a
- on the *right* by the vertical line x = b is given by:

$$A = \int_{a}^{b} [f(x) - g(x)]dx$$

Suppose f and g are continuous, and $f(x) \ge g(x)$ for $a \le x \le b$.

Then the area bounded:

- **•** above by the graph of f(x)
- **•** below by the graph of g(x)
- on the *left* by the vertical line x = a
- on the *right* by the vertical line x = b is given by:

$$A = \int_{a}^{b} [f(x) - g(x)]dx$$

The assumption that $f(x) - g(x) \ge 0$ on [a, b] is necessary.

Example: Find the area between the curves y = x and y = x + 1 between x = 0 and x = 1

Example: Find the area between the curves y = x and y = x + 1 between x = 0 and x = 1

Let f(x) = x + 1 and g(x) = x, then $f(x) \ge g(x)$ for $x \in [0, 1]$, so the area is

$$A = \int_{0}^{1} [(x+1) - x] dx$$

Example: Find the area between the curves y = x and y = x + 1 between x = 0 and x = 1

Let f(x) = x + 1 and g(x) = x, then $f(x) \ge g(x)$ for $x \in [0, 1]$, so the area is

$$A = \int_{0}^{1} [(x+1) - x] dx$$

$$= \int_0^1 1 \, dx = x \Big]_0^1 = 1 - 0 = 1$$

Example: Find the area between the curves $y = e^x$ and $y = e^{-x}$ between x = 0 and x = 1

Example: Find the area between the curves $y = e^x$ and $y = e^{-x}$ between x = 0 and x = 1

Let $f(x) = e^x$ and $g(x) = e^{-x}$, then $f(x) \ge g(x)$ for $x \in [0, 1]$, so the area is

$$A = \int_0^1 [e^x - e^{-x}] dx = \int_0^1 e^x dx - \int_0^1 e^{-x} dx$$

Example: Find the area between the curves $y = e^x$ and $y = e^{-x}$ between x = 0 and x = 1

Let $f(x) = e^x$ and $g(x) = e^{-x}$, then $f(x) \ge g(x)$ for $x \in [0, 1]$, so the area is

$$A = \int_0^1 [e^x - e^{-x}] dx = \int_0^1 e^x dx - \int_0^1 e^{-x} dx$$

$$= (e^{x} + e^{-x})]_{0}^{1} = e + e^{-1} - 2$$

Find the area between the curves

x and x^3 between x = 0 and x = 1

- 1. 1/4 4. 1
- 2. 1/2 5. 3
- 3. 2 6. none of the above

Find the area between the curves

x and x^3 between x = 0 and x = 1

- 1. 1/4 4. 1
- 2. 1/2 5. 3
- 3. 2 6. none of the above

1. A = 1/4

Find the area between the curves

 $\cos x$ and $\sin x$ between x = 0 and $x = \frac{\pi}{4}$

- 1. $\sqrt{2}$ 4. 1

 2. $\sqrt{2}/2$ 5. $\sqrt{2}-3$

 3. $\sqrt{2}-1$ 6. none of the above

Find the area between the curves

 $\cos x$ and $\sin x$ between x = 0 and $x = \frac{\pi}{4}$

 1. $\sqrt{2}$ 4. 1

 2. $\sqrt{2}/2$ 5. $\sqrt{2}-3$

 3. $\sqrt{2}-1$ 6. none of the above

3. $A = \sqrt{2} - 1$

If neither $f(x) \ge g(x)$ nor $g(x) \ge f(x)$ on [a, b], then the previous formula is incorrect.

If neither $f(x) \ge g(x)$ nor $g(x) \ge f(x)$ on [a, b], then the previous formula is incorrect.

In this case the area is

$$A = \int_0^1 |f(x) - g(x)| \, dx$$

If neither $f(x) \ge g(x)$ nor $g(x) \ge f(x)$ on [a, b], then the previous formula is incorrect.

In this case the area is

$$A = \int_{0}^{1} |f(x) - g(x)| \, dx$$

Note that if $f(x) \ge g(x)$ on [a, b], then

$$|f(x) - g(x)| = f(x) - g(x)$$

If neither $f(x) \ge g(x)$ nor $g(x) \ge f(x)$ on [a, b], then the previous formula is incorrect.

In this case the area is

$$A = \int_{0}^{1} |f(x) - g(x)| \, dx$$

Note that if $f(x) \ge g(x)$ on [a, b], then

$$|f(x) - g(x)| = f(x) - g(x)$$

The formula reduces to the previous one in this case.

Example: Find the area between the curves $y = \cos x$ and $y = \sin x$ between x = 0 and $x = \pi/2$

Example: Find the area between the curves $y = \cos x$ and $y = \sin x$ between x = 0 and $x = \pi/2$

In this case,

- $\cos x \ge \sin x$ when $0 \le x \le \pi/4$
- $\cos x \le \sin x$ when $\pi/4 \le x \le \pi/2$

Example: Find the area between the curves $y = \cos x$ and $y = \sin x$ between x = 0 and $x = \pi/2$

In this case,

- $\cos x \ge \sin x$ when $0 \le x \le \pi/4$
- $\cos x \le \sin x$ when $\pi/4 \le x \le \pi/2$

We have to split

$$A = \int_0^{\pi/2} |\cos x - \sin x| \, dx$$

into two parts. The graphs cross at $x = \pi/4$ in this case.

$$\int_0^{\pi/2} |\cos x - \sin x| \, dx$$

$$= \int_0^{\pi/4} [\cos x - \sin x] dx + \int_{\pi/4}^{\pi/2} [\sin x - \cos x] dx$$

$$\int_0^{\pi/2} |\cos x - \sin x| \, dx$$

$$= \int_0^{\pi/4} [\cos x - \sin x] dx + \int_{\pi/4}^{\pi/2} [\sin x - \cos x] dx$$

$$= (\sqrt{2} - 1) + (\sqrt{2} - 1) = 2\sqrt{2} - 2$$

$$\int_0^{\pi/2} |\cos x - \sin x| \, dx$$

$$= \int_0^{\pi/4} [\cos x - \sin x] dx + \int_{\pi/4}^{\pi/2} [\sin x - \cos x] dx$$

$$= (\sqrt{2} - 1) + (\sqrt{2} - 1) = 2\sqrt{2} - 2$$

The difficult part of this type of problem is usually finding the points where the curves of f and g cross.

Find the area between the curves

 x^3 and x between x = -1 and x = 1

- **1.** 1/3 **4.** 1
- **2.** 1/4 **5.** 1/2
- **3.** 0 **6.** none of the above

Find the area between the curves

 x^3 and x between x = -1 and x = 1

- **1.** 1/3 **4.** 1
- **2.** 1/4 **5.** 1/2
- **3.** 0 **6.** none of the above

5. A = 1/2

Find the area between the curves

y = 2x + 1 and y = -x + 4 between x = 0 and x = 2

- **1.** 1/3 **4.** 3
- **2.** 1/4 **5.** 1/2
- **3.** 2 **6.** none of the above

Find the area between the curves

y = 2x + 1 and y = -x + 4 between x = 0 and x = 2

- **1.** 1/3 **4.** 3
- **2.** 1/4 **5.** 1/2
- **3.** 2 **6.** none of the above

4. A = 3 The graphs intersect at x = 1.

Find the region bounded by the curves

$$y = 4x - x^2$$
 and $y = x^2$

- **1.** 8/3 **4.** 3
- **2.** 4/3 **5.** 1/8
- **3.** 2/3 **6.** none of the above

Find the region bounded by the curves

$$y = 4x - x^2$$
 and $y = x^2$

- **1.** 8/3 **4.** 3
- **2.** 4/3 **5.** 1/8
- **3.** 2/3 **6.** none of the above

1. A = 8/3 The graphs intersect at x = 0 and x = 2.

Find the region bounded by the curves

 $y = \sin(\pi x/2)$ and $y = x^2 - 2x$

- 4/3
 3/π
 π/3
 3π/8
- 3. $4/3 + 4/\pi$ 6. none of the above

Find the region bounded by the curves

 $y = \sin(\pi x/2)$ and $y = x^2 - 2x$

- 4/3
 3/π
 π/3
 3π/8
- 3. $4/3 + 4/\pi$ 6. none of the above

3. $A = 4/3 + 4/\pi$ The graphs intersect at x = 0 and x = 2.