Integrals of Even and Odd Functions

Gene Quinn

Integrals of Even and Odd Functions

Recall that a function f is:

- even if $f(-x)=f(x)$
- odd if $f(-x)=-f(x)$

Integrals of Even and Odd Functions

The following theorem is often useful in evaluating integrals of even and odd functions:

Suppose f is continuous on the interval $[-a, a]$.
Then:

$$
\begin{gathered}
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \text { if } f \text { is even } \\
\int_{-a}^{a} f(x) d x=0 \text { if } f \text { is odd }
\end{gathered}
$$

Integrals of Even and Odd Functions

Example: For any odd positive integer $k, f(x)=x^{k}$ is an odd function, so for any positive real number a and positive odd integer k,

$$
\int_{-a}^{a} x^{k} d x=0
$$

Integrals of Even and Odd Functions

Example: Evaluate:

$$
\int_{-\pi}^{\pi} \frac{\sin x}{2+x^{2}} d x
$$

Integrals of Even and Odd Functions

Example: Evaluate:

$$
\int_{-\pi}^{\pi} \frac{\sin x}{2+x^{2}} d x
$$

Substitute $-x$ for x in the above expression, we get

$$
\frac{\sin (-x)}{2+(-x)^{2}}=\frac{-\sin x}{2+x^{2}}=-\frac{\sin x}{2+x^{2}}
$$

so the function is odd and the integral is zero.

Integrals of Even and Odd Functions

Example: For any even positive integer $k, f(x)=x^{k}$ is an even function, so for any positive real number a and positive even integer k,

$$
\int_{-a}^{a} x^{k} d x=2 \int_{0}^{a} x^{k}
$$

