The Evaluation Theorem

Gene Quinn
The Evaluation Theorem

Theorem: If f is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) \, dx = F(b) - F(a)
$$

where F is any antiderivative of f.
The Evaluation Theorem

Theorem: If f is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) \, dx = F(b) - F(a)
$$

where F is any antiderivative of f. The evaluation theorem provides a way to evaluate a definite integral that does not require taking limits of Riemann sums.
The Evaluation Theorem

Theorem: If f is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) \, dx = F(b) - F(a)
$$

where F is any antiderivative of f. The evaluation theorem provides a way to evaluate a definite integral that does not require taking limits of Riemann sums.

Later, we will incorporate this theorem into the Fundamental Theorem of Calculus.
The Evaluation Theorem

Example: Evaluate

\[\int_{0}^{1} x^2 \, dx \]
The Evaluation Theorem

Example: Evaluate

\[\int_{0}^{1} x^2 \, dx \]

Note that

\[F(x) = \frac{x^3}{3} \]

is an antiderivative of \(f(x) = x^2 \). The evaluation theorem states that:

\[\int_{0}^{1} x^2 \, dx = F(1) - F(0) = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \]
The Evaluation Theorem

Example: Evaluate

\[
\int_{0}^{\pi} \cos x \, dx
\]
The Evaluation Theorem

Example: Evaluate

\[\int_{0}^{\pi} \cos x \, dx \]

In this case

\[F(x) = \sin x \]

is an antiderivative of \(f(x) = \cos x \). The evaluation theorem states that:

\[\int_{0}^{\pi} \cos dx = F(\pi) - F(0) = \sin \pi - \sin 0 = 0 - 0 = 0 \]