Riemann Sums

Gene Quinn

Definition of Riemann Sum

Definition: Riemann Sum

If x_{i}^{*} is chosen to be an arbitrary point in the $i^{t h}$ interval, the sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

is called a Riemann sum.

Definition of Riemann Sum

Definition: Riemann Sum

If x_{i}^{*} is chosen to be an arbitrary point in the $i^{t h}$ interval, the sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

is called a Riemann sum.
Note that R_{n} is a Riemann sum with x_{i}^{*} chosen to be the right endpoint of the $i^{\text {th }}$ interval.

Definition of Riemann Sum

Definition: Riemann Sum

If x_{i}^{*} is chosen to be an arbitrary point in the $i^{t h}$ interval, the sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

is called a Riemann sum.

Note that R_{n} is a Riemann sum with x_{i}^{*} chosen to be the right endpoint of the $i^{\text {th }}$ interval.

Likewise L_{n} is a Riemann sum with x_{i}^{*} chosen to be the left endpoint of the $i^{\text {th }}$ interval.

Riemann Sum Example

Example: Riemann sum evaluation. If:

- $f(x)=x^{2}$
- $a=2$
- $b=4$
calculate
R_{4}

Riemann Sum Example

Example: Riemann sum evaluation. If:

- $f(x)=x^{2}$
- $a=2$
- $b=4$
calculate

$$
R_{4}
$$

Solution: For $R_{4}, n=4$.
First calculate Δx as:

$$
\Delta x=\frac{b-a}{n}=\frac{4-2}{4}=0.5
$$

Riemann Sum Example

The picture in this case is:

Riemann Sum Example

Recall that in the definition of R_{n},

$$
x_{i}=a+i \cdot \Delta x
$$

Riemann Sum Example

Recall that in the definition of R_{n},

$$
x_{i}=a+i \cdot \Delta x
$$

So, our Riemann sum R_{4} has

$$
\begin{aligned}
& x_{i}^{*}=x_{i}=a+i \cdot \Delta x=a+i, \quad i=1,2,3,4 \\
& x_{1}^{*}=2+1 * 0.5=2.5 \\
& x_{2}^{*}=2+2 * 0.5=3 \\
& x_{3}^{*}=2+3 * 0.5=3.5 \\
& x_{4}^{*}=2+4 * 0.5=4
\end{aligned}
$$

Riemann Sum Example

Recall that in the definition of R_{n},

$$
x_{i}=a+i \cdot \Delta x
$$

So, our Riemann sum R_{4} has

$$
\begin{aligned}
& x_{i}^{*}=x_{i}=a+i \cdot \Delta x=a+i, \quad i=1,2,3,4 \\
& x_{1}^{*}=2+1 * 0.5=2.5 \\
& x_{2}^{*}=2+2 * 0.5=3 \\
& x_{3}^{*}=2+3 * 0.5=3.5 \\
& x_{4}^{*}=2+4 * 0.5=4
\end{aligned}
$$

Riemann Sums

The Riemann sum is

$$
R_{4}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\sum_{1}^{4}\left(x_{i}^{*}\right)^{2} \Delta x
$$

Riemann Sums

The Riemann sum is

$$
\begin{gathered}
R_{4}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\sum_{1}^{4}\left(x_{i}^{*}\right)^{2} \Delta x \\
R_{4}=(2.5)^{2} \cdot 0.5+(3)^{2} \cdot 0.5+(3.5)^{2} \cdot 0.5+(4)^{2} \cdot 0.5
\end{gathered}
$$

Riemann Sums

The Riemann sum is

$$
\begin{gathered}
R_{4}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\sum_{1}^{4}\left(x_{i}^{*}\right)^{2} \Delta x \\
R_{4}=(2.5)^{2} \cdot 0.5+(3)^{2} \cdot 0.5+(3.5)^{2} \cdot 0.5+(4)^{2} \cdot 0.5 \\
R_{4}=3.125+4.5+6.125+8 \\
R_{4}=21.75
\end{gathered}
$$

Riemann Sums

Recall that if a function f is continuous on a closed interval $[a, b]$, we may divide the interval into n subintervals of equal length

$$
\Delta x=\frac{b-a}{n}
$$

Riemann Sums

Recall that if a function f is continuous on a closed interval $[a, b]$, we may divide the interval into n subintervals of equal length

$$
\Delta x=\frac{b-a}{n}
$$

If we call the right endpoint of the $i^{\text {th }}$ subinterval x_{i}, then we have essentially defined a set of values

$$
\left\{x_{0}=a, x_{1}, x_{2}, \ldots, x_{n}=b\right\}
$$

that partition the interval $[a, b]$ into n subintervals

$$
\left\{\left[a, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, b\right]\right\}
$$

Riemann Sums

Now choose a set of n sample points

$$
\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right\}
$$

such that x_{i}^{*} is in the $i^{\text {th }}$ subinterval, that is,

$$
x_{i-1} \leq x_{i}^{*} \leq x_{i}, \quad, i=1,2, \ldots, n
$$

Riemann Sums

Now choose a set of n sample points

$$
\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right\}
$$

such that x_{i}^{*} is in the $i^{\text {th }}$ subinterval, that is,

$$
x_{i-1} \leq x_{i}^{*} \leq x_{i}, \quad, i=1,2, \ldots, n
$$

From the way the interval is divided, this means that

$$
a+(i-1) \cdot \Delta x \leq x_{i}^{*} \leq a+i \cdot \Delta x, \quad i=1,2, \ldots, n
$$

Riemann Sums

Now choose a set of n sample points

$$
\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right\}
$$

such that x_{i}^{*} is in the $i^{\text {th }}$ subinterval, that is,

$$
x_{i-1} \leq x_{i}^{*} \leq x_{i}, \quad, i=1,2, \ldots, n
$$

From the way the interval is divided, this means that

$$
a+(i-1) \cdot \Delta x \leq x_{i}^{*} \leq a+i \cdot \Delta x, \quad i=1,2, \ldots, n
$$

Sums of the form

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Riemann Sums - Special Cases

Here are a couple of special cases of Riemann sums for particular choices of the x_{i}^{*}.

If x_{i}^{*} is chosen to be the right endpoint of the $i^{\text {th }}$ interval, then

$$
x_{i}^{*}=x_{i}
$$

and the Riemann sum is

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Riemann Sums - Special Cases

Here are a couple of special cases of Riemann sums for particular choices of the x_{i}^{*}.

If x_{i}^{*} is chosen to be the right endpoint of the $i^{\text {th }}$ interval, then

$$
x_{i}^{*}=x_{i}
$$

and the Riemann sum is

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

In this case, $x_{i}=a+i \cdot \Delta x$ so the Riemann sum can be written as

$$
\sum_{i=1}^{n} f(a+i \cdot \Delta x) \Delta x=\sum_{i=1}^{n} f\left[a+i \cdot\left(\frac{b-a}{n}\right)\right]\left(\frac{b-a}{n}\right)
$$

Riemann Sums - Special Cases

If x_{i}^{*} is chosen to be the left endpoint of the $i^{t h}$ interval, then

$$
x_{i}^{*}=x_{i-1}
$$

and the Riemann sum is

$$
\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x
$$

(recall that we defined $x_{0}=a$)

Riemann Sums - Special Cases

If x_{i}^{*} is chosen to be the left endpoint of the $i^{\text {th }}$ interval, then

$$
x_{i}^{*}=x_{i-1}
$$

and the Riemann sum is

$$
\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x
$$

(recall that we defined $x_{0}=a$)
In this case, $x_{i}=a+(i-1) \cdot \Delta x$ so the Riemann sum can be written as

$$
\sum_{i=1}^{n} f[a+(i-1) \cdot \Delta x] \Delta x=\sum_{i=1}^{n} f\left[a+(i-1) \cdot\left(\frac{b-a}{n}\right)\right]\left(\frac{b-a}{n}\right)
$$

Riemann Sums - Special Cases

Finally, we may choose x_{i}^{*} to be the midpoint of the $i^{\text {th }}$ interval. In this case, we denote x_{i}^{*} by \bar{x}_{i} :

$$
x_{i}^{*}=\bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)
$$

and the Riemann sum is

$$
\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x
$$

Riemann Sums - Special Cases

Finally, we may choose x_{i}^{*} to be the midpoint of the $i^{\text {th }}$ interval. In this case, we denote x_{i}^{*} by \bar{x}_{i} :

$$
x_{i}^{*}=\bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)
$$

and the Riemann sum is

$$
\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x
$$

In this case, $\bar{x}_{i}=a+\left(i-\frac{1}{2}\right) \cdot \Delta x$ so the Riemann sum can be written as

$$
\sum_{i=1}^{n} f\left[a+\left(i-\frac{1}{2}\right) \cdot \Delta x\right] \Delta x=\sum_{i=1}^{n} f\left[a+\left(i-\frac{1}{2}\right) \cdot\left(\frac{b-a}{n}\right)\right]\left(\frac{b-a}{n}\right)
$$

Applications of Riemann Sums

As we saw in section 5.1, sums of the form

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

which are called Riemann sums, arise in connection with area and distance problems.

Applications of Riemann Sums

As we saw in section 5.1 , sums of the form

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

which are called Riemann sums, arise in connection with area and distance problems.

In fact, they arise in a great many other problems where the given function f represents a rate of change and asked to find the total change over some interval.

Applications of Riemann Sums

As we saw in section 5.1, sums of the form

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

which are called Riemann sums, arise in connection with area and distance problems.

In fact, they arise in a great many other problems where the given function f represents a rate of change and asked to find the total change over some interval.

In many applications, the total change can be represented as the limit of a Riemann sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

as the number of subintervals increases without bound.

