Properties of Definite Integrals

Gene Quinn

Properties of Definite Integrals

In the following slides, we assume that

$$
[a, b]
$$

is an interval and that the functions

$$
f(x) \text { and } g(x)
$$

are both continuous on $[a, b]$.

Definite Integral of a Constant Function

Property 1:

If the function f is constant on an interval $[a, b]$, that is,

$$
f(x)=c \quad a \leq x \leq b
$$

then

$$
\int_{a}^{b} f(x) d x=c \cdot(b-a)
$$

Definite Integral of a Constant Function

Property 1:

If the function f is constant on an interval $[a, b]$, that is,

$$
f(x)=c \quad a \leq x \leq b
$$

then

$$
\int_{a}^{b} f(x) d x=c \cdot(b-a)
$$

If $f(x)=c=4, a=0$, and $b=2$,

$$
\int_{a}^{b} f(x) d x=c \cdot(b-a)=4 \cdot(2-0)=8
$$

Definite Integral of a Constant Function

If $f(x)=c=4, \quad a=0, \quad$ and $b=2$, the picture would be:

Definite Integral of a Constant Function

Note that if f is constant on $[a, b]$, the definite integral is equal to the Riemann sum using right endpoints with $n=1$:

$$
\int_{a}^{b} f(x) d x=R_{1}
$$

Definite Integral of a Constant Function

Note that if f is constant on $[a, b]$, the definite integral is equal to the Riemann sum using right endpoints with $n=1$:

$$
\int_{a}^{b} f(x) d x=R_{1}
$$

In fact, the definite integral is equal to R_{n} for any n :

$$
\int_{a}^{b} f(x) d x=R_{n}, \quad n=1,2, \ldots
$$

Definite Integral of a Constant Function

Note that if f is constant on $[a, b]$, the definite integral is equal to the Riemann sum using right endpoints with $n=1$:

$$
\int_{a}^{b} f(x) d x=R_{1}
$$

In fact, the definite integral is equal to R_{n} for any n :

$$
\int_{a}^{b} f(x) d x=R_{n}, \quad n=1,2, \ldots
$$

The definite integral is also equal to L_{n} for any n :

$$
\int_{a}^{b} f(x) d x=L_{n}, \quad n=1,2, \ldots
$$

Definite Integral of a Sum of Functions

Property 2:

If the functions f and g are continuous on an interval $[a, b]$,

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Definite Integral of a Sum of Functions

Property 2:

If the functions f and g are continuous on an interval $[a, b]$,

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

In words, the definite integral of the sum of functions is equal to the sum of their definite integrals.

Definite Integral of a Sum of Functions

Suppose

$$
f(x)=x+\sqrt{4-x^{2}} \quad 0 \leq x \leq 2
$$

Then the area under the graph from $a=0$ to $b=2$ is

Definite Integral of a Sum of Functions

According to the second property, we can write this as a sum of two areas, one for $f(x)$,

$$
\int_{a}^{b} f(x) d x=\int_{0}^{2} x d x
$$

Definite Integral of a Sum of Functions

and one for $g(x)$,

$$
\int_{a}^{b} g(x) d x=\int_{0}^{2} \sqrt{4-x^{2}} d x
$$

The area under the graph of g from $a=0$ to $b=2$ is

Definite Integral of a Sum of Functions

The area graphs reflect the relationship between

$$
f(x), \quad g(x), \quad \text { and } \quad f(x)+g(x)
$$

Definite Integral of a Sum of Functions

From elementary geometry, the area under $f(x)$ from a to b is

$$
\text { Area }=\int_{0}^{2} x d x=\frac{1}{2} b \cdot h=\frac{1}{2}(b-a) \cdot f(2)=2
$$

Definite Integral of a Sum of Functions

The area under $g(x)$ is one quarter of a circle of radius 2 , so

$$
\text { Area }=\int_{0}^{2} \sqrt{4-x^{2}} d x=\frac{1}{4} \pi 2^{2}=\pi
$$

Definite Integral of a Sum of Functions

Property 2 says that

$$
\begin{aligned}
\int_{0}^{2}\left(x+\sqrt{4-x^{2}}\right) d x & =\int_{0}^{2} x d x+\int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =2+\pi
\end{aligned}
$$

Definite Integral of a Constant Times a Function

Property 3:

If the functions f is continuous on an interval $[a, b]$ and c is any constant,

$$
\int_{a}^{b} c \cdot f(x) d x=c \cdot \int_{a}^{b} f(x) d x
$$

Definite Integral of a Constant Times a Function

Property 3:

If the functions f is continuous on an interval $[a, b]$ and c is any constant,

$$
\int_{a}^{b} c \cdot f(x) d x=c \cdot \int_{a}^{b} f(x) d x
$$

In words, the definite integral of a constant times a function is equal to that constant times the integral of the function.

Definite Integral of a Constant Times a Function

Suppose

$$
f(x)=\frac{1}{4} \sqrt{4-x^{2}} \quad 0 \leq x \leq 2
$$

Then the area under the graph from $a=0$ to $b=2$ is one quarter of the area of an ellipse:

Definite Integral of a Sum of Functions

We don't have a formula for the area of an ellipse. However, Property 3 says that the area will be equal to

$$
\text { Area }=\int_{0}^{2} \frac{1}{4} \sqrt{4-x^{2}} d x=\frac{1}{4} \int_{0}^{2} \sqrt{4-x^{2}} d x
$$

Definite Integral of a Sum of Functions

We don't have a formula for the area of an ellipse. However, Property 3 says that the area will be equal to

$$
\text { Area }=\int_{0}^{2} \frac{1}{4} \sqrt{4-x^{2}} d x=\frac{1}{4} \int_{0}^{2} \sqrt{4-x^{2}} d x
$$

We've already seen that

$$
\int_{0}^{2} \sqrt{4-x^{2}} d x
$$

Definite Integral of a Sum of Functions

So the area under one quarter of the ellipse is

$$
\text { Area }=\frac{1}{4} \int_{0}^{2} \sqrt{4-x^{2}} d x=\frac{1}{4} \cdot \frac{1}{4} \pi 2^{2}=\frac{\pi}{4}
$$

Definite Integral of a Difference of Functions

Property 4:

If the functions f and g are continuous on an interval $[a, b]$,

$$
\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
$$

Definite Integral of a Difference of Functions

Property 4:

If the functions f and g are continuous on an interval $[a, b]$,

$$
\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
$$

In words, the definite integral of the difference of functions is equal to the difference of their individual definite integrals.

Definite Integral of a Difference of Functions

Suppose we have

$$
f(x)=x-\sqrt{4-x^{2}} \quad 0 \leq x \leq 2
$$

Then the area under the graph from $a=0$ to $b=2$ is

Definite Integral of a Difference of Functions

The area graphs reflect the relationship between

$$
f(x), \quad g(x), \quad \text { and } \quad f(x)-g(x)
$$

Definite Integral of a Difference of Functions

Property 4 says that

$$
\begin{aligned}
\int_{0}^{2}\left(x-\sqrt{4-x^{2}}\right) d x & =\int_{0}^{2} x d x-\int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =2-\pi
\end{aligned}
$$

Note that the area is negative.

Definite Integral of a Difference of Functions

This is a consequence of the fact that the definite integral is the limit of Riemann sums.

Think about what the value of

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

is when $f\left(x_{i}^{*}\right)<0$.

Definite Integral Over Adjacent Intervals

The next property says that if we have two definite integrals of the same function over adjacent intervals, we can combine them.

Definite Integral Over Adjacent Intervals

The next property says that if we have two definite integrals of the same function over adjacent intervals, we can combine them.

Property 5:

Suppose f is continuous on the interval $[a, b]$ and c lies between a and b, that is,

$$
a \leq c \leq b
$$

Then

$$
\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x
$$

