# **Properties of Definite Integrals**

Gene Quinn

**Properties of Definite Integrals** 

In the following slides, we assume that

[a,b]

is an interval and that the functions

f(x) and g(x)

are both continuous on [a, b].

#### **Property 1:**

If the function f is constant on an interval [a, b], that is,

$$f(x) = c \quad a \le x \le b$$

then

$$\int_{a}^{b} f(x)dx = c \cdot (b-a)$$

#### **Property 1:**

If the function f is constant on an interval [a, b], that is,

$$f(x) = c \quad a \le x \le b$$

then

$$\int_{a}^{b} f(x)dx = c \cdot (b-a)$$

If f(x) = c = 4, a = 0, and b = 2,

$$\int_{a}^{b} f(x)dx = c \cdot (b-a) = 4 \cdot (2-0) = 8$$

If 
$$f(x) = c = 4$$
,  $a = 0$ , and  $b = 2$ , the picture would be:



Note that if f is constant on [a, b], the definite integral is equal to the Riemann sum using right endpoints with n = 1:

$$\int_{a}^{b} f(x)dx = R_1$$

Note that if f is constant on [a, b], the definite integral is equal to the Riemann sum using right endpoints with n = 1:

$$\int_{a}^{b} f(x)dx = R_1$$

In fact, the definite integral is equal to  $R_n$  for any n:

$$\int_{a}^{b} f(x)dx = R_n, \quad n = 1, 2, \dots$$

Note that if f is constant on [a, b], the definite integral is equal to the Riemann sum using right endpoints with n = 1:

$$\int_{a}^{b} f(x)dx = R_1$$

In fact, the definite integral is equal to  $R_n$  for any n:

$$\int_{a}^{b} f(x)dx = R_n, \quad n = 1, 2, \dots$$

The definite integral is also equal to  $L_n$  for any n:

$$\int_{a}^{b} f(x)dx = L_{n}, \quad n = 1, 2, \dots$$

#### **Property 2:**

If the functions f and g are continuous on an interval [a, b],

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

#### **Property 2:**

If the functions f and g are continuous on an interval [a, b],

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

In words, the definite integral of the sum of functions is equal to the sum of their definite integrals.

Suppose

$$f(x) = x + \sqrt{4 - x^2} \quad 0 \le x \le 2$$

Then the area under the graph from a = 0 to b = 2 is



According to the second property, we can write this as a sum of two areas, one for f(x),

$$\int_{a}^{b} f(x)dx = \int_{0}^{2} xdx$$





The area graphs reflect the relationship between

f(x), g(x), and f(x) + g(x)



From elementary geometry, the area under f(x) from a to b is

Area = 
$$\int_0^2 x dx = \frac{1}{2}b \cdot h = \frac{1}{2}(b-a) \cdot f(2) = 2$$



The area under g(x) is one quarter of a circle of radius 2, so

Area = 
$$\int_0^2 \sqrt{4 - x^2} dx = \frac{1}{4}\pi 2^2 = \pi$$



Property 2 says that

$$\int_0^2 (x + \sqrt{4 - x^2}) dx = \int_0^2 x dx + \int_0^2 \sqrt{4 - x^2} dx$$

 $=2+\pi$ 

#### **Property 3:**

If the functions f is continuous on an interval  $\left[a,b\right]$  and c is any constant,

$$\int_{a}^{b} c \cdot f(x) dx = c \cdot \int_{a}^{b} f(x) dx$$

#### **Property 3:**

If the functions f is continuous on an interval  $\left[a,b\right]$  and c is any constant,

$$\int_{a}^{b} c \cdot f(x) dx = c \cdot \int_{a}^{b} f(x) dx$$

In words, the definite integral of a constant times a function is equal to that constant times the integral of the function.

Suppose

$$f(x) = \frac{1}{4}\sqrt{4 - x^2} \quad 0 \le x \le 2$$

Then the area under the graph from a = 0 to b = 2 is one quarter of the area of an ellipse:



We don't have a formula for the area of an ellipse. However, Property 3 says that the area will be equal to

Area = 
$$\int_0^2 \frac{1}{4}\sqrt{4-x^2}dx = \frac{1}{4}\int_0^2 \sqrt{4-x^2}dx$$

We don't have a formula for the area of an ellipse. However, Property 3 says that the area will be equal to

Area = 
$$\int_0^2 \frac{1}{4}\sqrt{4-x^2}dx = \frac{1}{4}\int_0^2 \sqrt{4-x^2}dx$$

We've already seen that

$$\int_0^2 \sqrt{4 - x^2} dx$$

represents one quarter of the area of a circle of radius 2.

So the area under one quarter of the ellipse is

Area 
$$= \frac{1}{4} \int_{0}^{2} \sqrt{4 - x^{2}} dx = \frac{1}{4} \cdot \frac{1}{4} \pi 2^{2} = \frac{\pi}{4}$$



#### **Property 4:**

If the functions f and g are continuous on an interval [a, b],

$$\int_{a}^{b} (f(x) - g(x))dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$

#### **Property 4:**

If the functions f and g are continuous on an interval [a, b],

$$\int_{a}^{b} (f(x) - g(x))dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$

In words, the definite integral of the difference of functions is equal to the difference of their individual definite integrals.

Suppose we have

$$f(x) = x - \sqrt{4 - x^2} \quad 0 \le x \le 2$$

Then the area under the graph from a = 0 to b = 2 is



The area graphs reflect the relationship between

$$f(x)$$
,  $g(x)$ , and  $f(x) - g(x)$ 



Property 4 says that

$$\int_0^2 (x - \sqrt{4 - x^2}) dx = \int_0^2 x dx - \int_0^2 \sqrt{4 - x^2} dx$$

$$= 2 - \pi$$

Note that the area is **negative**.

This is a consequence of the fact that the definite integral is the limit of Riemann sums.

Think about what the value of

$$\sum_{i=1}^{n} f(x_i^*) \Delta x$$

is when  $f(x_i^*) < 0$ .

## **Definite Integral Over Adjacent Intervals**

The next property says that if we have two definite integrals of the same function over adjacent intervals, we can combine them.

## Definite Integral Over Adjacent Intervals

The next property says that if we have two definite integrals of the same function over adjacent intervals, we can combine them.

#### **Property 5:**

Suppose f is continuous on the interval [a, b] and c lies between a and b, that is,

 $a \le c \le b$ 

Then

$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = \int_{a}^{b} f(x)dx$$