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Properties of Definite Integrals

In the following slides, we assume that

[a, b]

is an interval and that the functions

f(x) and g(x)

are both continuous on [a, b].
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Definite Integral of a Constant Function

Property 1:

If the function f is constant on an interval [a, b], that is,

f(x) = c a ≤ x ≤ b

then
∫

b

a

f(x)dx = c · (b − a)
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Definite Integral of a Constant Function

Property 1:

If the function f is constant on an interval [a, b], that is,

f(x) = c a ≤ x ≤ b

then
∫

b

a

f(x)dx = c · (b − a)

If f(x) = c = 4, a = 0, and b = 2,

∫ b

a

f(x)dx = c · (b − a) = 4 · (2 − 0) = 8
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Definite Integral of a Constant Function

If f(x) = c = 4, a = 0, and b = 2, the picture would be:
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Definite Integral of a Constant Function

Note that if f is constant on [a, b], the definite integral is equal to the
Riemann sum using right endpoints with n = 1:

∫ b

a

f(x)dx = R1
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Definite Integral of a Constant Function

Note that if f is constant on [a, b], the definite integral is equal to the
Riemann sum using right endpoints with n = 1:

∫ b

a

f(x)dx = R1

In fact, the definite integral is equal to Rn for any n:

∫ b

a

f(x)dx = Rn, n = 1, 2, . . .
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Definite Integral of a Constant Function

Note that if f is constant on [a, b], the definite integral is equal to the
Riemann sum using right endpoints with n = 1:

∫ b

a

f(x)dx = R1

In fact, the definite integral is equal to Rn for any n:

∫ b

a

f(x)dx = Rn, n = 1, 2, . . .

The definite integral is also equal to Ln for any n:

∫

b

a

f(x)dx = Ln, n = 1, 2, . . .
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Definite Integral of a Sum of Functions

Property 2:

If the functions f and g are continuous on an interval [a, b],

∫

b

a

(f(x) + g(x))dx =

∫

b

a

f(x)dx +

∫

b

a

g(x)dx
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Definite Integral of a Sum of Functions

Property 2:

If the functions f and g are continuous on an interval [a, b],

∫

b

a

(f(x) + g(x))dx =

∫

b

a

f(x)dx +

∫

b

a

g(x)dx

In words, the definite integral of the sum of functions is equal to the sum

of their definite integrals.

Properties of Definite Integrals – p.6/23



Definite Integral of a Sum of Functions

Suppose

f(x) = x +
√

4 − x2 0 ≤ x ≤ 2

Then the area under the graph from a = 0 to b = 2 is
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Definite Integral of a Sum of Functions

According to the second property, we can write this as a sum of two
areas, one for f(x),

∫ b

a

f(x)dx =

∫

2

0

xdx
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Definite Integral of a Sum of Functions

and one for g(x),
∫

b

a

g(x)dx =

∫

2

0

√

4 − x2dx

The area under the graph of g from a = 0 to b = 2 is
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Definite Integral of a Sum of Functions

The area graphs reflect the relationship between

f(x), g(x), and f(x) + g(x)
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Definite Integral of a Sum of Functions

From elementary geometry, the area under f(x) from a to b is

Area =

∫

2

0

xdx =
1

2
b · h =

1

2
(b − a) · f(2) = 2
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Definite Integral of a Sum of Functions

The area under g(x) is one quarter of a circle of radius 2, so

Area =

∫

2

0

√

4 − x2dx =
1

4
π22 = π
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Definite Integral of a Sum of Functions

Property 2 says that

∫

2

0

(x +
√

4 − x2)dx =

∫

2

0

xdx +

∫

2

0

√

4 − x2dx

= 2 + π
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Definite Integral of a Constant Times a Function

Property 3:

If the functions f is continuous on an interval [a, b] and c is any
constant,

∫

b

a

c · f(x)dx = c ·

∫

b

a

f(x)dx
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Definite Integral of a Constant Times a Function

Property 3:

If the functions f is continuous on an interval [a, b] and c is any
constant,

∫

b

a

c · f(x)dx = c ·

∫

b

a

f(x)dx

In words, the definite integral of a constant times a function is equal to

that constant times the integral of the function.
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Definite Integral of a Constant Times a Function

Suppose

f(x) =
1

4

√

4 − x2 0 ≤ x ≤ 2

Then the area under the graph from a = 0 to b = 2 is one quarter of the
area of an ellipse:
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Definite Integral of a Sum of Functions

We don’t have a formula for the area of an ellipse. However, Property 3
says that the area will be equal to

Area =

∫

2

0

1

4

√

4 − x2dx =
1

4

∫

2

0

√

4 − x2dx
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Definite Integral of a Sum of Functions

We don’t have a formula for the area of an ellipse. However, Property 3
says that the area will be equal to

Area =

∫

2

0

1

4

√

4 − x2dx =
1

4

∫

2

0

√

4 − x2dx

We’ve already seen that

∫

2

0

√

4 − x2dx

represents one quarter of the area of a circle of radius 2.
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Definite Integral of a Sum of Functions

So the area under one quarter of the ellipse is

Area =
1

4

∫

2

0

√

4 − x2dx =
1

4
·
1

4
π22 =

π
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Definite Integral of a Difference of Functions

Property 4:

If the functions f and g are continuous on an interval [a, b],

∫

b

a

(f(x) − g(x))dx =

∫

b

a

f(x)dx −

∫

b

a

g(x)dx
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Definite Integral of a Difference of Functions

Property 4:

If the functions f and g are continuous on an interval [a, b],

∫

b

a

(f(x) − g(x))dx =

∫

b

a

f(x)dx −

∫

b

a

g(x)dx

In words, the definite integral of the difference of functions is equal to

the difference of their individual definite integrals.
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Definite Integral of a Difference of Functions

Suppose we have

f(x) = x −

√

4 − x2 0 ≤ x ≤ 2

Then the area under the graph from a = 0 to b = 2 is
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Definite Integral of a Difference of Functions

The area graphs reflect the relationship between

f(x), g(x), and f(x) − g(x)
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Definite Integral of a Difference of Functions

Property 4 says that

∫

2

0

(x −

√

4 − x2)dx =

∫

2

0

xdx −

∫

2

0

√

4 − x2dx

= 2 − π

Note that the area is negative.

Properties of Definite Integrals – p.21/23



Definite Integral of a Difference of Functions

This is a consequence of the fact that the definite integral is the limit of
Riemann sums.

Think about what the value of

n
∑

i=1

f(x∗

i )∆x

is when f(x∗

i
) < 0.
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Definite Integral Over Adjacent Intervals

The next property says that if we have two definite integrals of the
same function over adjacent intervals, we can combine them.
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Definite Integral Over Adjacent Intervals

The next property says that if we have two definite integrals of the
same function over adjacent intervals, we can combine them.

Property 5:
Suppose f is continuous on the interval [a, b] and c lies between a and
b, that is,

a ≤ c ≤ b

Then
∫ c

a

f(x)dx +

∫ b

c

f(x)dx =

∫ b

a

f(x)dx
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