The Midpoint Rule

Gene Quinn

The Midpoint Rule

Recall the special case where we chose x_{i}^{*} to be the midpoint of the $i^{t h}$ interval and denoted x_{i}^{*} by \bar{x}_{i} :

$$
x_{i}^{*}=\bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)
$$

so that the Riemann sum became

$$
\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x
$$

The Midpoint Rule

Recall the special case where we chose x_{i}^{*} to be the midpoint of the $i^{t h}$ interval and denoted x_{i}^{*} by \bar{x}_{i} :

$$
x_{i}^{*}=\bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)
$$

so that the Riemann sum became

$$
\sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x
$$

As a technique for approximating a definite integral, this is called the midpoint rule and is stated as

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x=\Delta x\left[f\left(\bar{x}_{1}\right)+\cdots+f\left(\bar{x}_{n}\right)\right]
$$

The Midpoint Rule

Example: Use the midpoint rule with $n=4$ to evaluate

$$
\int_{-2}^{2}|x| d x
$$

The Midpoint Rule

Example: Use the midpoint rule with $n=4$ to evaluate

$$
\int_{-2}^{2}|x| d x
$$

Solution: The endpoints of the four subintervals are: $\{-2,-1,0,1,2\}$.
The midpoints of the subintervals are: $\{-1.5,-0.5,0.5,1.5\}$
The function values at the midpoints are: $\{1.5,0.5,0.5,1.5\}$, and the approximate area is:

$$
(1 \cdot 1.5+1 \cdot 0.5+1 \cdot 0.5+1 \cdot 1.5)=4
$$

As it turns out, the approximation has the same value as the exact definite integral in this case.

