Gene Quinn

Recall the special case where we chose x_i^* to be the midpoint of the i^{th} interval and denoted x_i^* by \overline{x}_i :

$$x_i^* = \overline{x}_i = \frac{1}{2} \left(x_{i-1} + x_i \right)$$

so that the Riemann sum became

$$\sum_{i=1}^{n} f(\overline{x}_i) \Delta x$$

Recall the special case where we chose x_i^* to be the midpoint of the i^{th} interval and denoted x_i^* by \overline{x}_i :

$$x_i^* = \overline{x}_i = \frac{1}{2} \left(x_{i-1} + x_i \right)$$

so that the Riemann sum became

$$\sum_{i=1}^{n} f(\overline{x}_i) \Delta x$$

As a technique for approximating a definite integral, this is called the **midpoint rule** and is stated as

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} f(\overline{x}_{i}) \Delta x = \Delta x [f(\overline{x}_{1}) + \dots + f(\overline{x}_{n})]$$

Example: Use the midpoint rule with n = 4 to evaluate

$$\int_{-2}^{2} |x| \, dx$$

Example: Use the midpoint rule with n = 4 to evaluate

$$\int_{-2}^{2} |x| \, dx$$

Solution: The endpoints of the four subintervals are: $\{-2, -1, 0, 1, 2\}$.

The midpoints of the subintervals are: $\{-1.5, -0.5, 0.5, 1.5\}$

The function values at the midpoints are: $\{1.5, 0.5, 0.5, 1.5\}$, and the approximate area is:

$$(1 \cdot 1.5 + 1 \cdot 0.5 + 1 \cdot 0.5 + 1 \cdot 1.5) = 4$$

As it turns out, the approximation has the same value as the exact definite integral in this case.