The Definite Integral

Gene Quinn

Definition of a Definite Integral

Definition: If f is a continuous function on the closed interval $[a, b]$, and we divide that interval into n subintervals

$$
\left\{\left[a, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, b\right]\right\}
$$

each of length

$$
\Delta x=\frac{b-a}{n},
$$

then choose n sample points $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$, one sample point in each interval,

$$
x_{i-1} \leq x_{i}^{*} \leq x_{i}, \quad, i=1,2, \ldots, n
$$

then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Terminology for Definite Integrals

In the notation

$$
\int_{a}^{b} f(x) d x
$$

the function f is called the integrand.

Terminology for Definite Integrals

In the notation

$$
\int_{a}^{b} f(x) d x
$$

the function f is called the integrand.
a and b are called the limits of integration.
a is called the lower limit and
b is called the upper limit

Terminology for Definite Integrals

In the notation

$$
\int_{a}^{b} f(x) d x
$$

the function f is called the integrand.
a and b are called the limits of integration.
a is called the lower limit and
b is called the upper limit
The process of calculating an integral is called integration.

Notation for a Definite Integral

In the notation

$$
\int_{a}^{b} f(x) d x
$$

the letter x is simply a placeholder.
You can replace x with any other letter without changing the meaning of these symbols.

Notation for a Definite Integral

In the notation

$$
\int_{a}^{b} f(x) d x
$$

the letter x is simply a placeholder.
You can replace x with any other letter without changing the meaning of these symbols.

That is to say, each of the following represent the same definite integral:

$$
\int_{a}^{b} f(x) d x \quad \int_{a}^{b} f(u) d u \quad \int_{a}^{b} f(z) d z
$$

Evaluating Integrals

In some cases, it is possible to evaluate the definite integral algebraically using the definition, that is, by finding the limit of a Riemann sum.

Evaluating Integrals

In some cases, it is possible to evaluate the definite integral algebraically using the definition, that is, by finding the limit of a Riemann sum.

Often this requires one of the following formulas for sums of integers:

$$
\begin{gathered}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \\
\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
\end{gathered}
$$

Evaluating Integrals

We will start with a simple example. Suppose we want to evaluate

$$
\int_{0}^{1} x d x
$$

directly from the definition, that is, by finding

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Evaluating Integrals

We will start with a simple example. Suppose we want to evaluate

$$
\int_{0}^{1} x d x
$$

directly from the definition, that is, by finding

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

In this case,

$$
\Delta x=\frac{b-a}{n}=\frac{1-0}{n}=\frac{1}{n}
$$

Evaluating Integrals

If we choose x_{i}^{*} to be the right endpoint of the $i^{\text {th }}$ interval,

$$
x_{i}^{*}=x_{i}=i \Delta x=\frac{i}{n}
$$

then

$$
\int_{0}^{1} x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{i}{n}\right) \cdot \frac{1}{n}
$$

Evaluating Integrals

If we choose x_{i}^{*} to be the right endpoint of the $i^{\text {th }}$ interval,

$$
x_{i}^{*}=x_{i}=i \Delta x=\frac{i}{n}
$$

then

$$
\int_{0}^{1} x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{i}{n}\right) \cdot \frac{1}{n}
$$

Since $f(x)=x$, we can substitute to obtain

$$
\int_{0}^{1} x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{i}{n}\right) \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n} \cdot \frac{1}{n}
$$

Evaluating Integrals

Or:

$$
\begin{gathered}
\int_{0}^{1} x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}} \\
=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} i
\end{gathered}
$$

Evaluating Integrals

Or:

$$
\begin{gathered}
\int_{0}^{1} x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}} \\
=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} i
\end{gathered}
$$

Using the formula

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

we can write this as

$$
\int_{0}^{1} x d x=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \frac{n(n+1)}{2}
$$

Evaluating Integrals

So, evaluating the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \frac{n(n+1)}{2}=\lim _{n \rightarrow \infty} \frac{n^{2}+n}{2 n^{2}}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{2 n}\right)
$$

so

$$
\int_{0}^{1} x d x=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{2 n}\right)=\frac{1}{2}
$$

Evaluating Integrals

So, evaluating the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \frac{n(n+1)}{2}=\lim _{n \rightarrow \infty} \frac{n^{2}+n}{2 n^{2}}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{2 n}\right)
$$

so

$$
\int_{0}^{1} x d x=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{2 n}\right)=\frac{1}{2}
$$

Since the integral represents the area under the line $y=x$ from $x=0$
to $x=1$, we expect the answer to be $1 / 2$.

Evaluating Integrals

The process becomes more complicated if f is not as simple as it is in this example, but the process remains the same:

- Express the x_{i}^{*} in terms of a, b, i, and n.
- Write down the Riemann sum and try to simplify it.
- In particular, try to find function evaluations that result in some multiple of i, i^{2}, or i^{3}.
- Replace the sum with one of the summation formulas, and try to find the limit.

