Gene Quinn

Definition:

A function F is called an **antiderivative** of f on an interval I if

$$
F'(x) = f(x)
$$

for all $x \in I$.

Definition:

A function F is called an **antiderivative** of f on an interval I if

$$
F'(x) = f(x)
$$

for all $x \in I$.

Often F is an antiderivative of f for all real numbers x , so

 $I~=~(-\infty,\infty)$

Definition:

A function F is called an **antiderivative** of f on an interval I if

$$
F'(x) = f(x)
$$

for all $x \in I$.

Often F is an antiderivative of f for all real numbers x , so

$$
I~=~(-\infty,\infty)
$$

In this case F satisfies the definition of an antiderivative for any interval ^I, and the interval is usually not mentioned.

Example: Suppose

$$
f(x) = 3x^2 \quad \text{and} \quad F(x) = x^3
$$

Then F is an antiderivative of f (on any interval you choose) because

$$
F'(x) = \frac{d}{dx}x^3 = 3x^2 = f(x)
$$

We say an antiderivative rather than the antiderivative because $f(x) = 3x^2$ has many antiderivatives on any given interval I:

$$
F(x) = x3
$$

\n
$$
F_2(x) = x3 + 10
$$

\n
$$
F_3(x) = x3 - 3
$$

\n
$$
F_4(x) = x3 + 4
$$

We say an antiderivative rather than the antiderivative because $f(x) = 3x^2$ has many antiderivatives on any given interval I:

$$
F(x) = x3
$$

\n
$$
F_2(x) = x3 + 10
$$

\n
$$
F_3(x) = x3 - 3
$$

\n
$$
F_4(x) = x3 + 4
$$

Clearly if F is an antiderivative of f on some interval, we can add an

arbitrary constant C to F and still have an antiderivative of $f.$

If F is an antiderivative of f on an interval $I,$ then for $x\in I,$

 $c\cdot F(x)$

is an antiderivative of

 $c \cdot f(x)$

Example: Suppose $f(x) = x^4$ and

$$
g(x) = 4 \cdot f(x)
$$

Find an antiderivative of g and its associated interval.

Example: Suppose $f(x) = x^4$ and

$$
g(x) = 4 \cdot f(x)
$$

Find an antiderivative of g and its associated interval.

In this case $F(x) = x^5$ $^5/5$ is an antiderivative of $f(x)$ on $I=(-\infty,\infty),$ so

$$
G(x) = 4 \cdot F(x) = \frac{4}{5}x^5
$$

is an antiderivative of $g(x)$ on $I=(-\infty,\infty).$

If F is an antiderivative of f and G is an antiderivative of g on an
intervel I then an that interval interval $I,$ then on that interval

 $F(x) + G(x)$

is an antiderivative of

 $f(x) + g(x)$

Example: Suppose

$$
f(x) = x \quad \text{and} \quad g(x) = x^2
$$

Find an antiderivative of $f+g$ and its associated interval $I.$

Example: Suppose

$$
f(x) = x \quad \text{and} \quad g(x) = x^2
$$

Find an antiderivative of $f+g$ and its associated interval $I.$ Note that

• $F(x) = x^2$ $^2/2$ is an antiderivative of $f(x)$ on $I=(-\infty,\infty)$

• $G(x) = x^3/3$ is an antiderivative of $g(x)$ on $I = (-\infty, \infty)$ $^3/3$ is an antiderivative of $g(x)$ on $I=(-\infty,\infty)$ so

$$
F(x) + G(x) = \frac{x^2}{2} + \frac{x^3}{3}
$$

is an antiderivative of $f(x)+g(x)$ on $I=(-\infty,\infty).$

If

 $f(x) = x^n$ $n\quad\neq$ −1

then

$$
F(x) = \frac{x^{n+1}}{n+1}
$$

is an antiderivative of $f.$

If

 $f(x) = x^n$ $n\quad\neq$ −1

then

$$
F(x) = \frac{x^{n+1}}{n+1}
$$

is an antiderivative of $f.$

We can omit the statement of what the interval I is in this case because the statement is true for any interval $I.$

Example: If

$$
f(x) = \sqrt{x} = x^{\frac{1}{2}}
$$

find an antiderivative of f and its associated interval $I.$

Example: If

$$
f(x) = \sqrt{x} = x^{\frac{1}{2}}
$$

find an antiderivative of f and its associated interval $I.$

In this case the exponent is $n = 1/2$ so F has the form

$$
F(x) = \frac{x^{\left(\frac{1}{2}+1\right)}}{\left(\frac{1}{2}+1\right)} = \frac{2}{3} \cdot x^{\frac{3}{2}}
$$

The derivative of F is f for all values in $[0,\infty)$ (i.e., the domain of f) so

$$
I~=~[0,\infty)
$$

- We have seen how to find antiderivatives of functions of the form x^n when $x\not=$ −1.
- Now consider the case of $n=-\,$ $1,\,\mathsf{or}\,$

$$
f(x) = \frac{1}{x}
$$

- We have seen how to find antiderivatives of functions of the form x^n when $x\not=$ −1.
- Now consider the case of $n=-\,$ $1,\,\mathsf{or}\,$

$$
f(x) = \frac{1}{x}
$$

Recall from Section 3.7 that

$$
\frac{d}{dx}\ln x = \frac{1}{x}
$$

- We have seen how to find antiderivatives of functions of the form x^n when $x\not=$ −1.
- Now consider the case of $n=-\,$ $1,\,\mathsf{or}\,$

$$
f(x) = \frac{1}{x}
$$

Recall from Section 3.7 that

$$
\frac{d}{dx}\,\ln x\ =\ \frac{1}{x}
$$

This statement is valid on the domain of $\ln x$, which is the interval

$$
I = (0, \infty),
$$

Now we can say that

$$
F(x) = \ln x \quad \text{is an antiderivative of} \quad f(x) = \frac{1}{x} \quad \text{on} \quad I = (0, \infty)
$$

However, the function $f(x) = 1/x$ is defined everywhere except zero. Can we find a function F that is an antiderivative of f on its entire domain?

Yes, define F as a piecewise function

$$
F(x) = \begin{cases} \ln x & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0 \end{cases}
$$

Then $F'(x) = f(x)$ for all $x \neq 0$.

Recall the definition of absolute value as ^a piecewise function:

$$
|x| = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}
$$

This suggests that we may write the antiderivative

$$
F(x) = \begin{cases} \ln x & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0 \end{cases}
$$

more succinctly in the equivalent form

$$
F(x) = \ln|x|
$$