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1.Antiderivatives

Definition :

A function F is called an antiderivative of f on an interval I if

F ′(x) = f(x)

for all x ∈ I.
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1.Antiderivatives

Definition :

A function F is called an antiderivative of f on an interval I if

F ′(x) = f(x)

for all x ∈ I.

Often F is an antiderivative of f for all real numbers x, so

I = (−∞,∞)

In this case F satisfies the definition of an antiderivative for any interval
I, and the interval is usually not mentioned.
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2.Antiderivatives

Example : Suppose

f(x) = 3x2 and F (x) = x3

Then F is an antiderivative of f (on any interval you choose) because

F ′(x) =
d

dx
x3 = 3x2 = f(x)
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3.Antiderivatives

We say an antiderivative rather than the antiderivative because
f(x) = 3x2 has many antiderivatives on any given interval I:

F (x) = x3

F2(x) = x3 + 10

F3(x) = x3 − 3

F4(x) = x3 + 4
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3.Antiderivatives

We say an antiderivative rather than the antiderivative because
f(x) = 3x2 has many antiderivatives on any given interval I:

F (x) = x3

F2(x) = x3 + 10

F3(x) = x3 − 3

F4(x) = x3 + 4

Clearly if F is an antiderivative of f on some interval, we can add an

arbitrary constant C to F and still have an antiderivative of f .
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4.Examples of Antiderivatives

If F is an antiderivative of f on an interval I, then for x ∈ I,

c · F (x)

is an antiderivative of
c · f(x)
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5.Examples of Antiderivatives

Example: Suppose f(x) = x4 and

g(x) = 4 · f(x)

Find an antiderivative of g and its associated interval.
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5.Examples of Antiderivatives

Example: Suppose f(x) = x4 and

g(x) = 4 · f(x)

Find an antiderivative of g and its associated interval.

In this case F (x) = x5/5 is an antiderivative of f(x) on I = (−∞,∞),
so

G(x) = 4 · F (x) =
4

5
x5

is an antiderivative of g(x) on I = (−∞,∞).
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6.Examples of Antiderivatives

If F is an antiderivative of f and G is an antiderivative of g on an
interval I, then on that interval

F (x) + G(x)

is an antiderivative of
f(x) + g(x)
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7.Examples of Antiderivatives

Example : Suppose

f(x) = x and g(x) = x2

Find an antiderivative of f + g and its associated interval I.
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7.Examples of Antiderivatives

Example : Suppose

f(x) = x and g(x) = x2

Find an antiderivative of f + g and its associated interval I.

Note that
• F (x) = x2/2 is an antiderivative of f(x) on I = (−∞,∞)

• G(x) = x3/3 is an antiderivative of g(x) on I = (−∞,∞)

so

F (x) + G(x) =
x2

2
+

x3

3

is an antiderivative of f(x) + g(x) on I = (−∞,∞).
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8.Examples of Antiderivatives

If
f(x) = xn n 6= −1

then

F (x) =
xn+1

n + 1

is an antiderivative of f .
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8.Examples of Antiderivatives

If
f(x) = xn n 6= −1

then

F (x) =
xn+1

n + 1

is an antiderivative of f .

We can omit the statement of what the interval I is in this case because

the statement is true for any interval I.
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9.Examples of Antiderivatives

Example : If

f(x) =
√

x = x
1

2

find an antiderivative of f and its associated interval I.
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9.Examples of Antiderivatives

Example : If

f(x) =
√

x = x
1

2

find an antiderivative of f and its associated interval I.

In this case the exponent is n = 1/2 so F has the form

F (x) =
x( 1

2
+1)

(

1

2
+ 1

) =
2

3
· x 3

2

The derivative of F is f for all values in [0,∞) (i.e., the domain of f ) so

I = [0,∞)
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10.Examples of Antiderivatives

We have seen how to find antiderivatives of functions of the form xn

when x 6= −1.

Now consider the case of n = −1, or

f(x) =
1

x
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10.Examples of Antiderivatives

We have seen how to find antiderivatives of functions of the form xn

when x 6= −1.

Now consider the case of n = −1, or

f(x) =
1

x

Recall from Section 3.7 that

d

dx
lnx =

1

x

This statement is valid on the domain of ln x, which is the interval

I = (0,∞) ,
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11.Examples of Antiderivatives

Now we can say that

F (x) = lnx is an antiderivative of f(x) =
1

x
on I = (0,∞)

However, the function f(x) = 1/x is defined everywhere except zero.

Can we find a function F that is an antiderivative of f on its entire
domain?
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12.Examples of Antiderivatives

Yes, define F as a piecewise function

F (x) =

{

lnx if x > 0

ln(−x) if x < 0

Then F ′(x) = f(x) for all x 6= 0.
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13.Examples of Antiderivatives

Recall the definition of absolute value as a piecewise function:

|x| =

{

x if x > 0

−x if x < 0

This suggests that we may write the antiderivative

F (x) =

{

lnx if x > 0

ln(−x) if x < 0

more succinctly in the equivalent form

F (x) = ln |x|
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