The Integral Test

As the author notes, it is usually difficult to find the exact sum of a series.

The Integral Test

As the author notes, it is usually difficult to find the exact sum of a series.

First, it may be very difficult to find an expression for the $n^{\text {th }}$ term of the sequence of partial sums.

The Integral Test

As the author notes, it is usually difficult to find the exact sum of a series.

First, it may be very difficult to find an expression for the $n^{\text {th }}$ term of the sequence of partial sums.

Second, even if you find an expression, it may be hard to find its limit.

The Integral Test

As the author notes, it is usually difficult to find the exact sum of a series.

First, it may be very difficult to find an expression for the $n^{\text {th }}$ term of the sequence of partial sums.

Second, even if you find an expression, it may be hard to find its limit.

It would help to have some way of determining whether a series converges or not, without having to actually find the limit.

The Integral Test

Sometimes you can use an integral to determine whether a sum converges.

The Integral Test

Sometimes you can use an integral to determine whether a sum converges.

You want to pick an integrand that is continuous, positive, decreasing, and interpolates the series you are working with on $[0, \infty)$ (or $[m, \infty)$ for some m). That is,

$$
f(n)=a_{n} \quad n=1,2,3, \ldots
$$

The Integral Test

Sometimes you can use an integral to determine whether a sum converges.

You want to pick an integrand that is continuous, positive, decreasing, and interpolates the series you are working with on $[0, \infty)$ (or $[m, \infty)$ for some m). That is,

$$
f(n)=a_{n} \quad n=1,2,3, \ldots
$$

If you are trying to find

$$
\sum_{i=1}^{\infty} \frac{1}{n^{3}} \text { consider } \quad \int_{1}^{\infty} \frac{1}{x^{3}} d x
$$

The Integral Test

Sometimes you can use an integral to determine whether a sum converges.

You want to pick an integrand that is continuous, positive, decreasing, and interpolates the series you are working with on $[0, \infty)$ (or $[m, \infty)$ for some m). That is,

$$
f(n)=a_{n} \quad n=1,2,3, \ldots
$$

If you are trying to find

$$
\sum_{i=1}^{\infty} \frac{1}{n^{3}} \text { consider } \quad \int_{1}^{\infty} \frac{1}{x^{3}} d x
$$

The Integral Test

If you are trying to find

$$
\sum_{i=1}^{\infty} a_{n} \quad \text { where } \quad f(n)=a_{n}
$$

consider

$$
\int_{1}^{\infty} f(x) d x
$$

The Integral Test

If you are trying to find

$$
\sum_{i=1}^{\infty} a_{n} \quad \text { where } \quad f(n)=a_{n}
$$

consider

$$
\int_{1}^{\infty} f(x) d x
$$

If the integral converges, the series is converges.

The Integral Test

If you are trying to find

$$
\sum_{i=1}^{\infty} a_{n} \quad \text { where } \quad f(n)=a_{n}
$$

consider

$$
\int_{1}^{\infty} f(x) d x
$$

If the integral converges, the series is converges.
If the integral diverges, the series diverges.

The Integral Test

We can apply the integral test to

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x
$$

which converges if $p>1$ and diverges otherwise

The Integral Test

We can apply the integral test to

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x
$$

which converges if $p>1$ and diverges otherwise
The result is

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text { converges if } p>1 \text { and diverges if } p \leq 1
$$

The Comparison Test

If

$$
\sum a_{n} \text { and } \sum b_{n}
$$

are series with positive terms, then:
If $a_{n} \leq b_{n}$ for all n and $\sum b_{n}$ is convergent, then $\sum a_{n}$ is convergent also.

The Comparison Test

If

$$
\sum a_{n} \quad \text { and } \quad \sum b_{n}
$$

are series with positive terms, then:
If $a_{n} \leq b_{n}$ for all n and $\sum b_{n}$ is convergent, then $\sum a_{n}$ is convergent also.

If $a_{n} \geq b_{n}$ for all n and $\sum b_{n}$ is divergent, then $\sum a_{n}$ is divergent also.

Question 1

Determine whether the series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n+1)^{3}}
$$

1. The series converges
2. The series diverges
3. Cannot be determined

Question 1

Determine whether the series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n+1)^{3}}
$$

1. The series converges
2. The series diverges
3. Cannot be determined
4. The series converges

Solution

The series converges because

$$
f(x)=\frac{1}{(2 x+1)^{3}}
$$

is continuous, positive, and decreasing on $[1, \infty)$ so

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{(2 x+1)^{3}}=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{(2 x+1)^{3}} \\
& \quad=\lim _{t \rightarrow \infty}\left[-\frac{1}{4} \frac{1}{(2 x+1)^{2}}\right]_{1}^{t}=\frac{1}{36}
\end{aligned}
$$

Question 2

Determine whether the series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{11}{3 n^{2}+5 n+2}
$$

1. The series converges
2. The series diverges
3. Cannot be determined

Question 2

Determine whether the series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{11}{3 n^{2}+5 n+2}
$$

1. The series converges
2. The series diverges
3. Cannot be determined
4. The series converges

Solution

The series converges because

$$
a_{n}=\frac{11}{3 n^{2}+5 n+2}<\frac{11}{3 n^{2}}=\frac{11}{3} \frac{1}{n^{2}}
$$

which is a p-series with $n=2$.

