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As the author notes, it is usually difficult to find the exact
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The Integral Test
As the author notes, it is usually difficult to find the exact
sum of a series.

First, it may be very difficult to find an expression for the nth

term of the sequence of partial sums.

Second, even if you find an expression, it may be hard to
find its limit.

It would help to have some way of determining whether a
series converges or not, without having to actually find the
limit.
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The Integral Test
Sometimes you can use an integral to determine whether a
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Sometimes you can use an integral to determine whether a
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You want to pick an integrand that is continuous, positive,
decreasing, and interpolates the series you are working
with on [0,∞) (or [m,∞) for some m). That is,
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The Integral Test
If you are trying to find

∞
∑

i=1

an where f(n) = an

consider
∫

∞

1

f(x) dx

If the integral converges, the series is converges.

If the integral diverges, the series diverges.
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The Integral Test
We can apply the integral test to

∫

∞

1

1

xp
dx

which converges if p > 1 and diverges otherwise
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The Integral Test
We can apply the integral test to

∫

∞

1

1

xp
dx

which converges if p > 1 and diverges otherwise

The result is

∞
∑

n=1

1

np
converges if p > 1 and diverges if p ≤ 1
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The Comparison Test
If

∑

an and
∑

bn

are series with positive terms, then:

If an ≤ bn for all n and
∑

bn is convergent, then
∑

an is
convergent also.
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The Comparison Test
If

∑

an and
∑

bn

are series with positive terms, then:

If an ≤ bn for all n and
∑

bn is convergent, then
∑

an is
convergent also.

If an ≥ bn for all n and
∑

bn is divergent, then
∑

an is
divergent also.
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Question 1
Determine whether the series converges or diverges.

∞
∑

n=1

1

(2n + 1)3

1. The series converges

2. The series diverges

3. Cannot be determined
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Solution
The series converges because

f(x) =
1

(2x + 1)3

is continuous, positive, and decreasing on [1,∞) so

∫

∞

1

1

(2x + 1)3
= lim

t→∞

∫ t

1

1

(2x + 1)3

= lim
t→∞

[

−
1

4

1

(2x + 1)2

]t

1

=
1

36
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Question 2
Determine whether the series converges or diverges.

∞
∑

n=1

11

3n2 + 5n + 2

1. The series converges

2. The series diverges

3. Cannot be determined
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Solution
The series converges because

an =
11

3n2 + 5n + 2
<

11

3n2
=

11

3

1

n2

which is a p-series with n = 2.
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