Series

If we add the first few terms of the infinite sum

$$
\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots
$$

it appears that the sum is getting closer and closer to 1 .

Series

If we add the first few terms of the infinite sum

$$
\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots
$$

it appears that the sum is getting closer and closer to 1 .
Years ago we defined addition as a binary operation, but our definition says nothing about an infinite sum.

Series

If we add the first few terms of the infinite sum

$$
\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots
$$

it appears that the sum is getting closer and closer to 1 .
Years ago we defined addition as a binary operation, but our definition says nothing about an infinite sum.

As a result, we really need some new definitions if we want to speak intelligently about infinite sums.

Series

As usual, we try to avoid an expression explicitly involving ∞ through the use of a limit as some index n becomes larger and larger without any upper bound.

Series

As usual, we try to avoid an expression explicitly involving ∞ through the use of a limit as some index n becomes larger and larger without any upper bound. So we consider the sequence $s_{1}, s_{2}, s_{3}, \ldots$ of partial sums,

$$
\begin{aligned}
s_{1} & =a_{1} \\
s_{2} & =a_{1}+a_{2} \\
s_{3} & =a_{1}+a_{2}+a_{3} \\
s_{4} & =a_{1}+a_{2}+a_{3}+a_{4} \\
\vdots & \vdots
\end{aligned}
$$

Series

As usual, we try to avoid an expression explicitly involving ∞ through the use of a limit as some index n becomes larger and larger without any upper bound.
So we consider the sequence $s_{1}, s_{2}, s_{3}, \ldots$ of partial sums,

$$
\begin{aligned}
s_{1} & =a_{1} \\
s_{2} & =a_{1}+a_{2} \\
s_{3} & =a_{1}+a_{2}+a_{3} \\
s_{4} & =a_{1}+a_{2}+a_{3}+a_{4} \\
\vdots & \vdots
\end{aligned}
$$

or

$$
s_{n}=\sum_{i=1}^{n} a_{i}
$$

Series

Definition: Given a series $a_{1}+a_{2}+a_{3}+\cdots$, let s_{n} denote the $n^{t h}$ partial sum

$$
s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}
$$

Series

Definition: Given a series $a_{1}+a_{2}+a_{3}+\cdots$, let s_{n} denote the $n^{\text {th }}$ partial sum

$$
s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}
$$

If the sequence $\left\{s_{n}\right\}$ is convergent and there is a real number s such that

$$
\lim _{n \rightarrow \infty} s_{n}=s
$$

then the series is said to be convergent and we write

$$
\sum_{i=1}^{n} a_{n}=s
$$

Series

Definition: Given a series $a_{1}+a_{2}+a_{3}+\cdots$, let s_{n} denote the $n^{\text {th }}$ partial sum

$$
s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}
$$

If the sequence $\left\{s_{n}\right\}$ is convergent and there is a real number s such that

$$
\lim _{n \rightarrow \infty} s_{n}=s
$$

then the series is said to be convergent and we write

$$
\sum_{i=1}^{n} a_{n}=s
$$

Otherwise, we say that the series is divergent

Geometric Series

The geometric series

$$
1+r+r^{2}+r^{3}+\cdots=\sum_{i=1}^{\infty} r^{n-1}
$$

converges if $|r|<1$.

Geometric Series

The geometric series

$$
1+r+r^{2}+r^{3}+\cdots=\sum_{i=1}^{\infty} r^{n-1}
$$

converges if $|r|<1$.
In this case, the sum is

$$
\sum_{i=1}^{\infty} r^{n-1}=\frac{1}{1-r} \quad \text { if } \quad|r|<1
$$

Geometric Series

The geometric series

$$
1+r+r^{2}+r^{3}+\cdots=\sum_{i=1}^{\infty} r^{n-1}
$$

converges if $|r|<1$.
In this case, the sum is

$$
\sum_{i=1}^{\infty} r^{n-1}=\frac{1}{1-r} \quad \text { if } \quad|r|<1
$$

If $|r| \geq 1$, the geometric series is divergent

Geometric Series

More generally, the author write the geometric series with a constant multiplier a :

$$
a 1+a r+a r^{2}+a r^{3}+\cdots=\sum_{i=1}^{\infty} a r^{n-1}=a \sum_{i=1}^{\infty} r^{n-1}
$$

Geometric Series

More generally, the author write the geometric series with a constant multiplier a :

$$
a 1+a r+a r^{2}+a r^{3}+\cdots=\sum_{i=1}^{\infty} a r^{n-1}=a \sum_{i=1}^{\infty} r^{n-1}
$$

In this case, the sum is

$$
a \sum_{i=1}^{\infty} r^{n-1}=a\left(\frac{1}{1-r}\right)=\frac{a}{1-r} \quad \text { if } \quad|r|<1
$$

Geometric Series

More generally, the author write the geometric series with a constant multiplier a :

$$
a 1+a r+a r^{2}+a r^{3}+\cdots=\sum_{i=1}^{\infty} a r^{n-1}=a \sum_{i=1}^{\infty} r^{n-1}
$$

In this case, the sum is

$$
a \sum_{i=1}^{\infty} r^{n-1}=a\left(\frac{1}{1-r}\right)=\frac{a}{1-r} \quad \text { if } \quad|r|<1
$$

If $|r| \geq 1$, the geometric series is divergent

Series

A necessary condition for a series $a_{1}+a_{2}+a_{3}+\cdots$ to converge is the following:

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

Series

A necessary condition for a series $a_{1}+a_{2}+a_{3}+\cdots$ to converge is the following:

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

By a neccesary condition, we mean a condition that must be true if the series is convergent.

Series

A necessary condition for a series $a_{1}+a_{2}+a_{3}+\cdots$ to converge is the following:

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

By a neccesary condition, we mean a condition that must be true if the series is convergent. If the series is not convergent, nothing can be said about $\lim _{n \rightarrow \infty} a_{n}$.

Series

A necessary condition for a series $a_{1}+a_{2}+a_{3}+\cdots$ to converge is the following:

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

By a neccesary condition, we mean a condition that must be true if the series is convergent.
If the series is not convergent, nothing can be said about $\lim _{n \rightarrow \infty} a_{n}$.
There are examples of divergent series where a_{n} converges to zero, and examples where a_{n} does not converge to zero.

Series

A necessary condition for a series $a_{1}+a_{2}+a_{3}+\cdots$ to converge is the following:

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

By a neccesary condition, we mean a condition that must be true if the series is convergent.
If the series is not convergent, nothing can be said about $\lim _{n \rightarrow \infty} a_{n}$.
There are examples of divergent series where a_{n} converges to zero, and examples where a_{n} does not converge to zero.
What can be said is that if the sequence $\left\{a_{n}\right\}$ does not converge to zero, then the series $a_{1}+a_{2}+\cdots$ is divergent.

Geometric Series

More generally, the author write the geometric series with a constant multiplier a :

$$
a 1+a r+a r^{2}+a r^{3}+\cdots=\sum_{i=1}^{\infty} a r^{n-1}=a \sum_{i=1}^{\infty} r^{n-1}
$$

Geometric Series

More generally, the author write the geometric series with a constant multiplier a :

$$
a 1+a r+a r^{2}+a r^{3}+\cdots=\sum_{i=1}^{\infty} a r^{n-1}=a \sum_{i=1}^{\infty} r^{n-1}
$$

In this case, the sum is

$$
a \sum_{i=1}^{\infty} r^{n-1}=a\left(\frac{1}{1-r}\right)=\frac{a}{1-r} \quad \text { if } \quad|r|<1
$$

Geometric Series

More generally, the author write the geometric series with a constant multiplier a :

$$
a 1+a r+a r^{2}+a r^{3}+\cdots=\sum_{i=1}^{\infty} a r^{n-1}=a \sum_{i=1}^{\infty} r^{n-1}
$$

In this case, the sum is

$$
a \sum_{i=1}^{\infty} r^{n-1}=a\left(\frac{1}{1-r}\right)=\frac{a}{1-r} \quad \text { if } \quad|r|<1
$$

If $|r| \geq 1$, the geometric series is divergent

Question 1

Determine whether the series converges or diverges. If it converges, find the sum.

$$
1+\frac{1}{5}+\frac{1}{25}+\frac{1}{125}+\cdots
$$

1. 1 4. $\frac{6}{5}$
2. $\frac{4}{5}$ 5. diverges
3. $\frac{5}{4}$ 6. none of the above

Question 1

Determine whether the series converges or diverges. If it converges, find the sum.

$$
1+\frac{1}{5}+\frac{1}{25}+\frac{1}{125}+\cdots
$$

1. 1 4. $\frac{6}{5}$
2. $\frac{4}{5}$ 5. diverges
3. $\frac{5}{4}$ 6. none of the above
4. $\frac{5}{4}$

Solution

This is a geometric series with

$$
r=\frac{1}{5}
$$

The series converges because $|r|<1$. The sum is

$$
\sum_{n=1}^{\infty} \frac{1}{5^{(n-1)}}=\frac{1}{1-\frac{1}{5}}=\frac{1}{\frac{4}{5}}=\frac{5}{4}
$$

Question 2

Determine whether the series converges or diverges. If it converges, find the sum.

$$
1-\frac{1}{5}+\frac{1}{25}-\frac{1}{125}+\cdots
$$

1. 1 4. $\frac{5}{6}$
2. $\frac{4}{5}$ 5. diverges
3. $\frac{5}{4}$ 6. none of the above

Question 2

Determine whether the series converges or diverges. If it converges, find the sum.

$$
1-\frac{1}{5}+\frac{1}{25}-\frac{1}{125}+\cdots
$$

1. 1 4. $\frac{5}{6}$
2. $\frac{4}{5}$ 5. diverges
3. $\frac{5}{4}$ 6. none of the above
4. $\frac{5}{6}$

Solution

This is a geometric series with

$$
r=-\frac{1}{5}
$$

The series converges because $|r|<1$. The sum is

$$
\sum_{n=1}^{\infty}\left(-\frac{1}{5}\right)^{(n-1)}=\frac{1}{1+\frac{1}{5}}=\frac{1}{\frac{6}{5}}=\frac{5}{6}
$$

Question 3

Determine whether the series converges or diverges. If it converges, find the sum.

$$
\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)
$$

1. 1 4. $\frac{6}{5}$
2. $\frac{4}{5}$ 5. diverges
3. $\frac{5}{4}$
4. none of the above

Question 3

Determine whether the series converges or diverges. If it converges, find the sum.

$$
\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)
$$

1. 1 4. $\frac{6}{5}$
2. $\frac{4}{5}$ 5. diverges
3. $\frac{5}{4}$ 6. none of the above
4. 1

Solution

This is a telescoping sum:

$$
\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots
$$

The series converges because the terms approach zero and only the first and last terms appear in the partial sum,

$$
s_{n}=\frac{1}{1}-\frac{1}{\sqrt{n+1}}
$$

SO $s_{n} \rightarrow 1$ as $n \rightarrow \infty$.

Question 4

Determine whether the series converges or diverges. If it converges, find the sum.

$$
\frac{1}{25}+\frac{1}{125}+\frac{1}{625}+\cdots
$$

1. 1 4. $\frac{5}{20}$
2. $\frac{1}{20}$ 5. diverges
3. $\frac{1}{4}$
4. none of the above

Question 4

Determine whether the series converges or diverges. If it converges, find the sum.

$$
\frac{1}{25}+\frac{1}{125}+\frac{1}{625}+\cdots
$$

1. 1 4. $\frac{5}{20}$
2. $\frac{1}{20}$ 5. diverges
3. $\frac{1}{4}$
4. none of the above
5. $\frac{1}{20}$

Solution

This is a geometric series with

$$
r=\frac{1}{5} \quad \text { and } \quad a=\frac{1}{25}
$$

The series converges because $|r|<1$. The sum is

$$
\sum_{n=1}^{\infty} \frac{1}{25} \frac{1}{5^{(n-1)}}=\frac{1}{25} \frac{1}{1-\frac{1}{5}}=\frac{1}{25} \frac{1}{5}=\frac{1}{20}
$$

Question 5

Determine whether the series converges or diverges. If it converges, find the sum.

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots
$$

1. 1 4. $\frac{5}{20}$
2. $\frac{1}{20}$ 5. diverges
3. $\frac{1}{4}$
4. none of the above

Question 5

Determine whether the series converges or diverges. If it converges, find the sum.

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots
$$

1. 1 4. $\frac{5}{20}$
2. $\frac{1}{20}$ 5. diverges
3. $\frac{1}{4}$
4. diverges

Solution

This is the harmonic series multiplied by $1 / 2$, so it diverges.

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots \\
= & \frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots\right)
\end{aligned}
$$

