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8
,

1

16
, . . .

it appears that the sum is getting closer and closer to 1.

Years ago we defined addition as a binary operation, but
our definition says nothing about an infinite sum.

As a result, we really need some new definitions if we want
to speak intelligently about infinite sums.
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Series
As usual, we try to avoid an expression explicitly involving
∞ through the use of a limit as some index n becomes
larger and larger without any upper bound.
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Series
Definition : Given a series a1 + a2 + a3 + · · ·, let sn denote
the nth partial sum
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the nth partial sum
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If the sequence {sn} is convergent and there is a real
number s such that

lim
n→∞
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Series
Definition : Given a series a1 + a2 + a3 + · · ·, let sn denote
the nth partial sum

sn =

n
∑

i=1

ai = a1 + a2 + · · · + an

If the sequence {sn} is convergent and there is a real
number s such that

lim
n→∞

sn = s

then the series is said to be convergent and we write

n
∑

i=1

an = s

Otherwise, we say that the series is divergent
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Geometric Series
The geometric series

1 + r + r2
+ r3

+ · · · =

∞
∑

i=1

rn−1

converges if |r| < 1.
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Geometric Series
More generally, the author write the geometric series with a
constant multiplier a:
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Series
A necessary condition for a series a1 + a2 + a3 + · · · to
converge is the following:
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Series
A necessary condition for a series a1 + a2 + a3 + · · · to
converge is the following:

lim
n→∞

an = 0

By a neccesary condition, we mean a condition that must
be true if the series is convergent.
If the series is not convergent, nothing can be said about
limn→∞ an.
There are examples of divergent series where an converges
to zero, and examples where an does not converge to zero.
What can be said is that if the sequence {an} does not
converge to zero, then the series a1 + a2 + · · · is divergent.
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More generally, the author write the geometric series with a
constant multiplier a:

a1 + ar + ar2
+ ar3

+ · · · =

∞
∑

i=1

arn−1
= a

∞
∑

i=1

rn−1

Stewart Section 11.2 – p. 7/15



Geometric Series
More generally, the author write the geometric series with a
constant multiplier a:

a1 + ar + ar2
+ ar3

+ · · · =

∞
∑

i=1

arn−1
= a

∞
∑

i=1

rn−1

In this case, the sum is

a
∞

∑

i=1

rn−1
= a

(

1

1 − r

)

=
a

1 − r
if |r| < 1

Stewart Section 11.2 – p. 7/15



Geometric Series
More generally, the author write the geometric series with a
constant multiplier a:

a1 + ar + ar2
+ ar3

+ · · · =

∞
∑

i=1

arn−1
= a

∞
∑

i=1

rn−1

In this case, the sum is

a
∞

∑

i=1

rn−1
= a

(

1

1 − r

)

=
a

1 − r
if |r| < 1

If |r| ≥ 1, the geometric series is divergent

Stewart Section 11.2 – p. 7/15



Question 1
Determine whether the series converges or diverges. If it
converges, find the sum.

1 +
1

5
+

1

25
+

1

125
+ · · ·

1. 1 4. 6
5

2. 4
5 5. diverges

3. 5
4 6. none of the above
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Solution
This is a geometric series with

r =
1

5

The series converges because |r| < 1. The sum is

∞
∑

n=1

1

5(n−1)
=

1

1 − 1
5

=
1

4
5

=
5

4
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Question 2
Determine whether the series converges or diverges. If it
converges, find the sum.

1 − 1

5
+

1

25
− 1

125
+ · · ·

1. 1 4. 5
6

2. 4
5 5. diverges

3. 5
4 6. none of the above
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Question 2
Determine whether the series converges or diverges. If it
converges, find the sum.
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1. 1 4. 5
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2. 4
5 5. diverges
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6

Stewart Section 11.2 – p. 10/15



Solution
This is a geometric series with

r = −1

5

The series converges because |r| < 1. The sum is

∞
∑

n=1

(

−1

5

)(n−1)

=
1

1 +
1
5

=
1

6
5

=
5

6
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Question 3
Determine whether the series converges or diverges. If it
converges, find the sum.

∞
∑

n=1

(

1√
n
− 1√

n + 1

)

1. 1 4. 6
5

2. 4
5 5. diverges

3. 5
4 6. none of the above
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Question 3
Determine whether the series converges or diverges. If it
converges, find the sum.

∞
∑

n=1

(

1√
n
− 1√

n + 1

)

1. 1 4. 6
5

2. 4
5 5. diverges

3. 5
4 6. none of the above

1. 1
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Solution
This is a telescoping sum:

(

1

1
− 1

2

)

+

(

1

2
− 1

3

)

+

(

1

3
− 1

4

)

+ · · ·

The series converges because the terms approach zero
and only the first and last terms appear in the partial sum,

sn =
1

1
− 1√

n + 1

so sn → 1 as n → ∞.
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Question 4
Determine whether the series converges or diverges. If it
converges, find the sum.

1

25
+

1

125
+

1

625
+ · · ·

1. 1 4. 5
20

2. 1
20 5. diverges

3. 1
4 6. none of the above
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3. 1
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Solution
This is a geometric series with

r =
1

5
and a =

1

25

The series converges because |r| < 1. The sum is

∞
∑

n=1

1

25

1

5(n−1)
=

1

25

1

1 − 1
5

=
1

25

1

4
5

=
1
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Question 5
Determine whether the series converges or diverges. If it
converges, find the sum.

1

2
+

1

4
+

1

6
+ · · ·

1. 1 4. 5
20

2. 1
20 5. diverges

3. 1
4 6. none of the above
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Question 5
Determine whether the series converges or diverges. If it
converges, find the sum.

1

2
+

1

4
+

1

6
+ · · ·

1. 1 4. 5
20

2. 1
20 5. diverges

3. 1
4 6. none of the above

5. diverges
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Solution
This is the harmonic series multiplied by 1/2, so it diverges.

1

2
+

1

4
+

1

6
+ · · ·

=
1

2

(

1 +
1

2
+

1

3
+ · · ·

)
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