Sequences

An infinite list of numbers written in a definite order is called a sequence and denoted by

$$
\left\{a_{n}\right\} \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}
$$

Sequences

An infinite list of numbers written in a definite order is called a sequence and denoted by

$$
\left\{a_{n}\right\} \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}
$$

Sometimes part of a sequence is written out, followed by elipses ". . ." to indicate continuation:

$$
\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

Sequences

An infinite list of numbers written in a definite order is called a sequence and denoted by

$$
\left\{a_{n}\right\} \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}
$$

Sometimes part of a sequence is written out, followed by elipses ". . ." to indicate continuation:

$$
\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

Another way of thinking of a sequence is a function whose domain is the natural numbers $\mathbb{N}=1,2,3, \ldots$.

Sequences

Although we do not use the familiar function notation $f(n)$ in this case, in effect we define

$$
f(n)=a_{n}, \quad n=1,2,3, \ldots
$$

Sequences

Although we do not use the familiar function notation $f(n)$ in this case, in effect we define

$$
f(n)=a_{n}, \quad n=1,2,3, \ldots
$$

Sometimes it is possible to express a sequence in terms of a formula such as:

$$
\left\{a_{n}\right\}=\frac{n}{n+2}=\left\{\frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \ldots\right\}
$$

or

$$
\left\{x_{n}\right\}=\frac{(-1)^{n}(n+1)}{3^{n}}=\left\{\frac{-2}{3}, \frac{3}{9}, \frac{-4}{27}, \frac{5}{81}, \ldots\right\}
$$

Sequences

Sometimes just the first few terms of the sequence are presented and it is left to the reader to figure out the pattern:

$$
\left\{a_{n}\right\}=\frac{4}{5}, 1, \frac{10}{9}, \frac{13}{11}, \frac{16}{13} \ldots
$$

Sequences

Sometimes just the first few terms of the sequence are presented and it is left to the reader to figure out the pattern:

$$
\left\{a_{n}\right\}=\frac{4}{5}, 1, \frac{10}{9}, \frac{13}{11}, \frac{16}{13} \ldots
$$

The formula for the $n^{\text {th }}$ term of the preceding sequence is:

$$
\left\{a_{n}\right\}=\frac{3 n+1}{2 n+3}, \quad n=1,2,3, \ldots
$$

Limits of Sequences

Often we are interested in what happens to the $n^{\text {th }}$ term of a sequence as n becomes large.

Limits of Sequences

Often we are interested in what happens to the $n^{\text {th }}$ term of a sequence as n becomes large.

Definition A sequence $\left\{a_{n}\right\}$ has the limit L denoted by

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \quad \text { as } \quad n \rightarrow \infty
$$

if we can make terms of a_{n} as close as we like to L by taking n sufficiently large.

Limits of Sequences

Often we are interested in what happens to the $n^{\text {th }}$ term of a sequence as n becomes large.

Definition A sequence $\left\{a_{n}\right\}$ has the limit L denoted by

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \quad \text { as } \quad n \rightarrow \infty
$$

if we can make terms of a_{n} as close as we like to L by taking n sufficiently large.

If $\lim a_{n}$ exists, we say the sequence converges.
Otherwise, we say it diverges.

Precise Definition of a Limit

A more precise definition of the limit of a sequence is the following:

Definition A sequence $\left\{a_{n}\right\}$ has the limit L denoted by

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \quad \text { as } \quad n \rightarrow \infty
$$

if for every $\epsilon>0$, there is a corresponding integer N such that

$$
\left|a_{n}-L\right|<\epsilon \quad \text { whenever } \quad n>N
$$

Precise Definition of a Limit

A more precise definition of the limit of a sequence is the following:

Definition A sequence $\left\{a_{n}\right\}$ has the limit L denoted by

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \quad \text { as } \quad n \rightarrow \infty
$$

if for every $\epsilon>0$, there is a corresponding integer N such that

$$
\left|a_{n}-L\right|<\epsilon \quad \text { whenever } \quad n>N
$$

One way to interpret this definition is the following: No matter how small you choose $\epsilon>0$, only a finite number of terms of $\left\{a_{n}\right\}$ lie outside the interval

$$
(L-\epsilon, L+\epsilon)
$$

Sequences

One way to manufacture a sequence from an otherwise continuous function is to consider the domain to consist only of integers:

$$
f(n)=a_{n} \quad \text { where } \quad f(x)=e^{x} \quad \text { and } \quad n=1,2,3,4, \ldots
$$

Sequences

One way to manufacture a sequence from an otherwise continuous function is to consider the domain to consist only of integers:

$$
f(n)=a_{n} \quad \text { where } \quad f(x)=e^{x} \quad \text { and } \quad n=1,2,3,4, \ldots
$$

The following theorem shows that the limit as $n \rightarrow \infty$ for this sequence is the same as the limit of the function f as $x \rightarrow \infty$:

If

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { and } \quad f(n)=a_{n}, \quad \text { then } \lim a_{n}=L
$$

Sequences

If f is continuous and x_{n} a sequence with $x_{n} \rightarrow L$, then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(L)
$$

Sequences

If f is continuous and x_{n} a sequence with $x_{n} \rightarrow L$, then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(L)
$$

This important theorem says that, for a continuous function, if a sequence x_{n} converges to L, the sequence of function values $f\left(x_{n}\right)$ converges to $f(L)$

Sequences

If f is continuous and x_{n} a sequence with $x_{n} \rightarrow L$, then

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(L)
$$

This important theorem says that, for a continuous function, if a sequence x_{n} converges to L, the sequence of function values $f\left(x_{n}\right)$ converges to $f(L)$

In other words, the processes of taking the limit and evaluating the function can be interchanged:

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)
$$

Sequences

If a_{n+1} is always greater than a_{n}, the sequence is increasing

Sequences

If a_{n+1} is always greater than a_{n}, the sequence is increasing

If a_{n+1} is always less than a_{n}, the sequence is increasing

Sequences

If a_{n+1} is always greater than a_{n}, the sequence is increasing

If a_{n+1} is always less than a_{n}, the sequence is increasing
A sequence that is either increasing or decreasing is called monotonic

Sequences

The sequence

$$
\left\{r^{n}\right\}=r, r^{2}, r^{3}, r^{4}, \ldots
$$

is convergent if $-1<r \leq 1$, and divergent otherwise.

Sequences

The sequence

$$
\left\{r^{n}\right\}=r, r^{2}, r^{3}, r^{4}, \ldots
$$

is convergent if $-1<r \leq 1$, and divergent otherwise.

$$
\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{lll}
0 & \text { if } & -1<r<1 \\
1 & \text { if } & r=1
\end{array}\right.
$$

Sequences

$\left\{a_{n}\right\}$ is bounded above if there is an M such that

$$
a_{n} \leq M \quad \text { for all } n
$$

Sequences

$\left\{a_{n}\right\}$ is bounded above if there is an M such that

$$
a_{n} \leq M \quad \text { for all } n
$$

$\left\{a_{n}\right\}$ is bounded below if there is an m such that

$$
m \leq a_{n} \quad \text { for all } n
$$

Sequences

$\left\{a_{n}\right\}$ is bounded above if there is an M such that

$$
a_{n} \leq M \quad \text { for all } n
$$

$\left\{a_{n}\right\}$ is bounded below if there is an m such that

$$
m \leq a_{n} \quad \text { for all } n
$$

A sequence that is bounded above and below is said to be a bounded sequence

Sequences

Monotonic Sequence Theorem: Every bounded monotonic sequence is convergent.

Sequences

Monotonic Sequence Theorem: Every bounded monotonic sequence is convergent.

Sequences

Monotonic Sequence Theorem: Every bounded monotonic sequence is convergent.

