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Sequences
An infinite list of numbers written in a definite order is called
a sequence and denoted by

{an} or {an}
∞

n=1

Sometimes part of a sequence is written out, followed by
elipses ". . ." to indicate continuation:

{an} = a1, a2, a3, . . . , an, . . .

Another way of thinking of a sequence is a function whose
domain is the natural numbers N = 1, 2, 3, . . ..
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Sequences
Although we do not use the familiar function notation f(n) in
this case, in effect we define

f(n) = an, n = 1, 2, 3, . . .
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Sequences
Although we do not use the familiar function notation f(n) in
this case, in effect we define

f(n) = an, n = 1, 2, 3, . . .

Sometimes it is possible to express a sequence in terms of
a formula such as:

{an} =
n

n + 2
=

{

1

3
,
2

4
,
3

5
,
4

6
, . . .

}

or

{xn} =
(−1)n(n + 1)

3n
=

{

−2

3
,
3

9
,
−4

27
,

5

81
, . . .

}
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Sequences
Sometimes just the first few terms of the sequence are
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Sequences
Sometimes just the first few terms of the sequence are
presented and it is left to the reader to figure out the pattern:

{an} =
4

5
, 1,

10

9
,
13

11
,
16

13
. . .

The formula for the nth term of the preceding sequence is:

{an} =
3n + 1

2n + 3
, n = 1, 2, 3, . . .
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Limits of Sequences

Often we are interested in what happens to the nth term of
a sequence as n becomes large.
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Often we are interested in what happens to the nth term of
a sequence as n becomes large.

Definition A sequence {an} has the limit L denoted by

lim
n→∞

an = L or an → L as n → ∞

if we can make terms of an as close as we like to L by
taking n sufficiently large.
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Limits of Sequences

Often we are interested in what happens to the nth term of
a sequence as n becomes large.

Definition A sequence {an} has the limit L denoted by

lim
n→∞

an = L or an → L as n → ∞

if we can make terms of an as close as we like to L by
taking n sufficiently large.

If lim an exists, we say the sequence converges .
Otherwise, we say it diverges .
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Precise Definition of a Limit
A more precise definition of the limit of a sequence is the
following:

Definition A sequence {an} has the limit L denoted by

lim
n→∞

an = L or an → L as n → ∞

if for every ǫ > 0, there is a corresponding integer N such
that

|an − L| < ǫ whenever n > N
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Precise Definition of a Limit
A more precise definition of the limit of a sequence is the
following:

Definition A sequence {an} has the limit L denoted by

lim
n→∞

an = L or an → L as n → ∞

if for every ǫ > 0, there is a corresponding integer N such
that

|an − L| < ǫ whenever n > N

One way to interpret this definition is the following: No
matter how small you choose ǫ > 0, only a finite number of
terms of {an} lie outside the interval

(L − ǫ, L + ǫ)
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Sequences
One way to manufacture a sequence from an otherwise
continuous function is to consider the domain to consist
only of integers:

f(n) = an where f(x) = ex and n = 1, 2, 3, 4, . . .
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Sequences
One way to manufacture a sequence from an otherwise
continuous function is to consider the domain to consist
only of integers:

f(n) = an where f(x) = ex and n = 1, 2, 3, 4, . . .

The following theorem shows that the limit as n → ∞ for this
sequence is the same as the limit of the function f as
x → ∞:

If

lim
x→∞

f(x) = L and f(n) = an, then lim an = L
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Sequences
If f is continuous and xn a sequence with xn → L, then

lim
n→∞

f(xn) = f(L)
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This important theorem says that, for a continuous function,
if a sequence xn converges to L, the sequence of function
values f(xn) converges to f(L)

Stewart Section 11.1 – p. 7/9



Sequences
If f is continuous and xn a sequence with xn → L, then

lim
n→∞

f(xn) = f(L)

This important theorem says that, for a continuous function,
if a sequence xn converges to L, the sequence of function
values f(xn) converges to f(L)

In other words, the processes of taking the limit and
evaluating the function can be interchanged:

lim
n→∞

f(xn) = f( lim
n→∞

xn)
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Sequences
If an+1 is always greater than an, the sequence is
increasing
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Sequences
If an+1 is always greater than an, the sequence is
increasing
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Sequences
If an+1 is always greater than an, the sequence is
increasing

If an+1 is always less than an, the sequence is increasing

A sequence that is either increasing or decreasing is called
monotonic
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Sequences
The sequence

{rn} = r, r2, r3, r4, . . .

is convergent if −1 < r ≤ 1, and divergent otherwise.
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Sequences
The sequence

{rn} = r, r2, r3, r4, . . .

is convergent if −1 < r ≤ 1, and divergent otherwise.

lim
n→∞

rn =

{

0 if −1 < r < 1

1 if r = 1
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Sequences
{an} is bounded above if there is an M such that

an ≤ M for all n
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Sequences
{an} is bounded above if there is an M such that

an ≤ M for all n

{an} is bounded below if there is an m such that

m ≤ an for all n
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Sequences
{an} is bounded above if there is an M such that

an ≤ M for all n

{an} is bounded below if there is an m such that

m ≤ an for all n

A sequence that is bounded above and below is said to be
a bounded sequence
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Sequences
Monotonic Sequence Theorem: Every bounded monotonic
sequence is convergent.
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