1. Exam 1 Inclass Solutions

Problem 1

Evaluate the integral

$$
\int \frac{x^{2}+x+4}{x^{3}+4 x} d x
$$

Solution: Write the integrand as

$$
\frac{2 x^{2}+x+4}{x\left(x^{2}+4\right)}
$$

The partial fractions expansion has the form

$$
\frac{2 x^{2}+x+4}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+c}{x^{2}+4}
$$

Multiplying both sides by $x\left(x^{2}+4\right)$ we get

$$
\begin{gathered}
2 x^{2}+x+4=A\left(x^{2}+4\right)+(B x+C)(x) \\
2 x^{2}+x+4=x^{2}(A+B)+C x+4 A
\end{gathered}
$$

Equating the coefficients of like powers of x leads to the system of equations

$$
\begin{array}{rlrl}
x^{2}: A+B & =2 \\
x: & & C & =1 \\
\text { const }: & 4 A & & =4
\end{array}
$$

From the last two equations, $C=1$ and $A=1$. Substituting $A=1$ into the first equation gives $B=1$ so the expansion is

$$
\frac{2 x^{2}+x+4}{x\left(x^{2}+4\right)}=\frac{1}{x}+\frac{x+1}{x^{2}+4}=\frac{1}{x}+\frac{x}{x^{2}+4}+\frac{1}{x^{2}+4}
$$

then

$$
\begin{gathered}
\int \frac{2 x^{2}+x+4}{x\left(x^{2}+4\right)} d x=\int \frac{d x}{x}+\int \frac{x}{x^{2}+4} d x+\int \frac{d x}{x^{2}+2^{2}} \\
=\ln |x|+\frac{1}{2} \ln \left|x^{2}+4\right|+\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C
\end{gathered}
$$

Problem 2

Find the volume obtained by revolving the area under the curve

$$
y=x^{2} e^{x}
$$

from $x=0$ to $x=1$ around the y-axis

Solution: This is a standard cylindrical shells problem, so the volume is

$$
V=2 \pi \int_{0}^{1} x \cdot x^{2} e^{x} d x=2 \pi \int_{0}^{1} x^{3} e^{x}
$$

The integral can be evaluated with integration by parts. The table is:

$$
\begin{array}{ll}
+x^{3} & e^{x} \\
-3 x^{2} & e^{x} \\
+6 x & e^{x} \\
-6 & e^{x}
\end{array}
$$

and the integral is:

$$
2 \pi\left[e^{x}\left(x^{3}+3 x^{2}+6 x+6\right)\right]_{0}^{1}=2 \pi(16 e-6)
$$

Problem 3 Find the volume obtained by revolving the area under the curve

$$
y=\cos x
$$

from $x=0$ to $x=\pi$ around the $x-$ axis
Solution: The cylindrical disk method gives:

$$
V=\pi \int_{0}^{\pi} \cos ^{2} x d x
$$

Using the identity

$$
\cos ^{2} x=\frac{1}{2}(1+\cos x)
$$

by substitution we get

$$
V=\frac{\pi}{2} \int_{0}^{\pi}(1+\cos 2 x) d x=\frac{\pi}{2}\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\pi}=\frac{\pi^{2}}{2}
$$

