Completing the Square

Completing the square is an algebraic technique for converting a standard quadratic expression

$$
a x^{2}+b x+c
$$

into one of the form

$$
(\alpha x+\beta)^{2}+\gamma
$$

Completing the Square

Completing the square is an algebraic technique for converting a standard quadratic expression

$$
a x^{2}+b x+c
$$

into one of the form

$$
(\alpha x+\beta)^{2}+\gamma
$$

We start by equating the two expressions:

$$
a x^{2}+b x+c=(\alpha x+\beta)^{2}+\gamma=\alpha^{2} x^{2}+2 \alpha \beta x+\beta^{2}+\gamma
$$

Completing the Square

$$
a x^{2}+b x+c=\alpha^{2} x^{2}+2 \alpha \beta x+\beta^{2}+\gamma
$$

Two polynomials are equal if and only if their coefficients are the same for each power of x.

Completing the Square

$$
a x^{2}+b x+c=\alpha^{2} x^{2}+2 \alpha \beta x+\beta^{2}+\gamma
$$

Two polynomials are equal if and only if their coefficients are the same for each power of x.

That means we can write three equations, one for each power of x :

- $a=\alpha^{2}$
- $b=2 \alpha \beta$
- $c=\beta^{2}+\gamma$

Completing the Square

Starting with the easiest one, we first solve for α :

$$
a=\alpha^{2} \quad \text { so } \quad \alpha=\sqrt{a}
$$

Completing the Square

Starting with the easiest one, we first solve for α :

$$
a=\alpha^{2} \quad \text { so } \quad \alpha=\sqrt{a}
$$

Next

$$
b=2 \alpha \beta \quad \text { so } \quad \beta=\frac{b}{2 \alpha}=\frac{b}{2 \sqrt{a}}
$$

Completing the Square

Starting with the easiest one, we first solve for α :

$$
a=\alpha^{2} \quad \text { so } \quad \alpha=\sqrt{a}
$$

Next

$$
b=2 \alpha \beta \quad \text { so } \quad \beta=\frac{b}{2 \alpha}=\frac{b}{2 \sqrt{a}}
$$

Finally

$$
c=\beta^{2}+\gamma \quad \text { so } \quad \gamma=c-\beta^{2}=c-\frac{b^{2}}{4 a}
$$

Completing the Square

In summary, if

$$
a x^{2}+b x+c=(\alpha x+\beta)^{2}+\gamma
$$

then:

- $\alpha=\sqrt{a}$
- $\beta=\frac{b}{2 \sqrt{a}}$
- $\gamma=c-\frac{b^{2}}{4 a}$

Completing the Square

In summary, if

$$
a x^{2}+b x+c=(\alpha x+\beta)^{2}+\gamma
$$

then:

- $\alpha=\sqrt{a}$
- $\beta=\frac{b}{2 \sqrt{a}}$
- $\gamma=c-\frac{b^{2}}{4 a}$

Note: If $a<0$, first write the quadratic as

$$
-\left(a x^{2}+b x+c\right)=-\left[(\alpha x+\beta)^{2}+\gamma\right]
$$

Question 1

Write the quadratic

$$
\left.x^{2}+8 x+5 \quad \text { in the form } \quad \alpha x+\beta\right)^{2}+\gamma
$$

1. $(x-4)^{2}+9$
2. $(x-4)^{2}-9$
3. $(x+2)^{2}-3$
4. $(x+2)^{2}-9$
5. $(x+4)^{2}-9$
6. none of the above

Question 1

Write the quadratic

$$
\left.x^{2}+8 x+5 \text { in the form } \quad \alpha x+\beta\right)^{2}+\gamma
$$

1. $(x-4)^{2}+9$
2. $(x-4)^{2}-9$
3. $(x+2)^{2}-3$
4. $(x+2)^{2}-9$
5. $(x+4)^{2}-9$
6. none of the above
7. $(x+4)^{2}-9$

Completing the Square

We want to find α, β, and γ so that:

$$
x^{2}+8 x+5=(\alpha x+\beta)^{2}+\gamma
$$

then since $a=1, b=8$, and $c=5$,

- $\alpha=\sqrt{a}=1$
- $\beta=\frac{b}{2 \sqrt{a}}=\frac{8}{2 \sqrt{1}}=4$
- $\gamma=c-\frac{b^{2}}{4 a}=5-\frac{8^{2}}{4 \cdot 1}=5-16=-11$

Completing the Square

We want to find α, β, and γ so that:

$$
x^{2}+8 x+5=(\alpha x+\beta)^{2}+\gamma
$$

then since $a=1, b=8$, and $c=5$,

- $\alpha=\sqrt{a}=1$
- $\beta=\frac{b}{2 \sqrt{a}}=\frac{8}{2 \sqrt{1}}=4$
- $\gamma=c-\frac{b^{2}}{4 a}=5-\frac{8^{2}}{4 \cdot 1}=5-16=-11$

One can easily check that

$$
x^{2}+8 x+5=(x+4)^{2}-11
$$

Question 2

Write the quadratic

$$
\left.x^{2}+x+1 \quad \text { in the form } \quad \alpha x+\beta\right)^{2}+\gamma
$$

1. $\left(x+\frac{1}{2}\right)^{2}-\frac{3}{4}$
2. $\left(x-\frac{1}{2}\right)^{2}+\frac{1}{4}$
3. $\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$
4. $\left(x+\frac{1}{2}\right)^{2}+\frac{1}{4}$
5. $\left(x-\frac{1}{2}\right)^{2}-\frac{3}{4}$
6. none of the above

Question 2

Write the quadratic

$$
\left.x^{2}+x+1 \quad \text { in the form } \quad \alpha x+\beta\right)^{2}+\gamma
$$

1. $\left(x+\frac{1}{2}\right)^{2}-\frac{3}{4}$
2. $\left(x-\frac{1}{2}\right)^{2}+\frac{1}{4}$
3. $\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$
4. $\left(x+\frac{1}{2}\right)^{2}+\frac{1}{4}$
5. $\left(x-\frac{1}{2}\right)^{2}-\frac{3}{4}$
6. none of the above
7. $\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$

Completing the Square

We want to find α, β, and γ so that:

$$
x^{2}+x+1=(\alpha x+\beta)^{2}+\gamma
$$

then since $a=1, b=1$, and $c=1$,

- $\alpha=\sqrt{a}=1$
- $\beta=\frac{b}{2 \sqrt{a}}=\frac{1}{2 \sqrt{1}}=\frac{1}{2}$
- $\gamma=c-\frac{b^{2}}{4 a}=1-\frac{1^{2}}{4 \cdot 1}=\frac{3}{4}$

Completing the Square

We want to find α, β, and γ so that:

$$
x^{2}+x+1=(\alpha x+\beta)^{2}+\gamma
$$

then since $a=1, b=1$, and $c=1$,

- $\alpha=\sqrt{a}=1$
- $\beta=\frac{b}{2 \sqrt{a}}=\frac{1}{2 \sqrt{1}}=\frac{1}{2}$
- $\gamma=c-\frac{b^{2}}{4 a}=1-\frac{1^{2}}{4 \cdot 1}=\frac{3}{4}$

One can easily check that

$$
x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}
$$

