Review of Trigonometric Functions

Gene Quinn

Suppose

(x,y)

is a point on the unit circle, that is, the circle with radius 1 centered at the origin.

Suppose

is a point on the unit circle, that is, the circle with radius 1 centered at the origin.

Now let θ be the angle that the line joining the origin and (x,y) makes with the positive x-axis.

Then:

$$x = \cos \theta$$
 and $y = \sin \theta$

Suppose

is a point on the unit circle, that is, the circle with radius 1 centered at the origin.

Now let θ be the angle that the line joining the origin and (x,y) makes with the positive x-axis.

Then:

$$x = \cos \theta$$
 and $y = \sin \theta$

From this definition, the single most important trigonometric identity follows by the Pythagorean theorem: For any θ ,

$$\cos^2 \theta + \sin^2 \theta = 1$$

Note that the standard notation

$$\sin^2 \theta$$

is interpreted as if it were written

$$(\sin \theta)^2$$

Note that the standard notation

$$\sin^2 \theta$$

is interpreted as if it were written

$$(\sin \theta)^2$$

In particular, the $\sin^2\theta$ notation should not be confused with

$$\sin \theta^2$$
 and $\sin(\sin \theta)$

If we start with the identity

$$\cos^2 \theta + \sin^2 \theta = 1$$

and, assuming $\cos \theta \neq 0$, divide both sides by $\cos^2 \theta$, we obtain a second identity,

$$1 + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}$$

If we start with the identity

$$\cos^2\theta + \sin^2\theta = 1$$

and, assuming $\cos \theta \neq 0$, divide both sides by $\cos^2 \theta$, we obtain a second identity,

$$1 + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}$$

Using the definitions of $\tan \theta$ and $\sec \theta$ we can write this as:

$$1 + \tan^2 \theta = \sec^2 \theta$$

If we start with the identity

$$\cos^2\theta + \sin^2\theta = 1$$

and, this time assuming $\sin \theta \neq 0$, divide both sides by $\sin^2 \theta$, we obtain a third identity,

$$\frac{\cos^2\theta}{\sin^2\theta} + 1 = \frac{1}{\sin^2\theta}$$

If we start with the identity

$$\cos^2\theta + \sin^2\theta = 1$$

and, this time assuming $\sin \theta \neq 0$, divide both sides by $\sin^2 \theta$, we obtain a third identity,

$$\frac{\cos^2\theta}{\sin^2\theta} + 1 = \frac{1}{\sin^2\theta}$$

Using the definitions of $\cot \theta$ and $\csc \theta$ we can write this as:

$$1 + \cot^2 \theta = \csc^2 \theta$$

The formulas for the \sin and \cos functions of the sum and difference of two angles can be easily derived from an important identity known as **Euler's Formula**.

The formulas for the \sin and \cos functions of the sum and difference of two angles can be easily derived from an important identity known as **Euler's Formula**.

Euler's Formula states that, for any real number y,

$$e^{iy} = \cos y + i \cdot \sin y$$

where i is imaginary unit, that is, the complex number with the property that

$$i^2 = -1$$

Now suppose θ is replaced by the sum of two angles, θ_1 and θ_2 .

Euler's Formula becomes:

$$e^{i(\theta_1+\theta_2)} = \cos(\theta_1+\theta_2) + i \cdot \sin(\theta_1+\theta_2)$$

Now suppose θ is replaced by the sum of two angles, θ_1 and θ_2 .

Euler's Formula becomes:

$$e^{i(\theta_1+\theta_2)} = \cos(\theta_1+\theta_2) + i \cdot \sin(\theta_1+\theta_2)$$

But adding exponents is equivalent to multiplying, so the exponential can be written as:

$$e^{i(\theta_1+\theta_2)} = e^{i\theta_1} \cdot e^{i\theta_2}$$

Applying Euler's Formula separately to each exponential, we obtain

$$e^{i\theta_1} \cdot e^{i\theta_2} = (\cos\theta_1 + i \cdot \sin\theta_1) \cdot (\cos\theta_2 + i \cdot \sin\theta_2)$$

Applying Euler's Formula separately to each exponential, we obtain

$$e^{i\theta_1} \cdot e^{i\theta_2} = (\cos\theta_1 + i \cdot \sin\theta_1) \cdot (\cos\theta_2 + i \cdot \sin\theta_2)$$

Expanding the binomial products on the right hand side gives:

$$(\cos \theta_1 + i \cdot \sin \theta_1) \cdot (\cos \theta_2 + i \cdot \sin \theta_2) =$$

$$= (\cos \theta_1 \cos \theta_2 + i^2 \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1)$$

Applying Euler's Formula separately to each exponential, we obtain

$$e^{i\theta_1} \cdot e^{i\theta_2} = (\cos\theta_1 + i \cdot \sin\theta_1) \cdot (\cos\theta_2 + i \cdot \sin\theta_2)$$

Expanding the binomial products on the right hand side gives:

$$(\cos \theta_1 + i \cdot \sin \theta_1) \cdot (\cos \theta_2 + i \cdot \sin \theta_2) =$$

$$= (\cos \theta_1 \cos \theta_2 + i^2 \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1)$$

Since $i^2 = -1$, this becomes

$$= (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1)$$

Now we have two equivalent expressions:

$$e^{i(\theta_1+\theta_2)} = \cos(\theta_1+\theta_2) + i \cdot \sin(\theta_1+\theta_2)$$

$$e^{i\theta_1} \cdot e^{i\theta_2} = (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1)$$

Now we have two equivalent expressions:

$$e^{i(\theta_1+\theta_2)} = \cos(\theta_1+\theta_2) + i \cdot \sin(\theta_1+\theta_2)$$

$$e^{i\theta_1} \cdot e^{i\theta_2} = (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1)$$

In each right hand side, the real part is $cos(\theta_1 + \theta_2)$, so equating the real parts of the two expressions, we have:

$$\cos(\theta_1 + \theta_2) = \cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2$$

Now we have two equivalent expressions:

$$e^{i(\theta_1+\theta_2)} = \cos(\theta_1+\theta_2) + i \cdot \sin(\theta_1+\theta_2)$$

$$e^{i\theta_1} \cdot e^{i\theta_2} = (\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1)$$

In each right hand side, the real part is $cos(\theta_1 + \theta_2)$, so equating the real parts of the two expressions, we have:

$$\cos(\theta_1 + \theta_2) = \cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2$$

The imaginary part is $i \cdot \sin(\theta_1 + \theta_2)$. Equating the imaginary parts these expressions gives

$$\sin(\theta_1 + \theta_2) = \cos\theta_1 \sin\theta_2 + \sin\theta_1 \cos\theta_2$$

In summary, using Euler's Formula we have derived the following expressions for the cosine and sine of a sum of two angles:

$$\cos(\theta_1 + \theta_2) = \cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2$$

$$\sin(\theta_1 + \theta_2) = \cos\theta_1 \sin\theta_2 + \sin\theta_1 \cos\theta_2$$

In summary, using Euler's Formula we have derived the following expressions for the cosine and sine of a sum of two angles:

$$\cos(\theta_1 + \theta_2) = \cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2$$

$$\sin(\theta_1 + \theta_2) = \cos\theta_1 \sin\theta_2 + \sin\theta_1 \cos\theta_2$$

We obtain the double angle formulas in the special case $\theta_1 = \theta_2$:

$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$
$$\sin(2\theta) = 2\cos \theta \sin \theta$$

Trigonometric Difference Formulas

It remains to find the formula for the sine of the difference of two angles:

$$\sin(\theta_1 - \theta_2) = \sin(\theta_1 + (-\theta_2)),$$

Trigonometric Difference Formulas

It remains to find the formula for the sine of the difference of two angles:

$$\sin(\theta_1 - \theta_2) = \sin(\theta_1 + (-\theta_2)),$$

by substitution we get:

$$\sin(\theta_1 + (-\theta_2)) = \sin\theta_1 \cos(-\theta_2) + \cos\theta_1 \sin(-\theta_2)$$

or

$$\sin(\theta_1 - \theta_2) = \sin \theta_1 \cos \theta_2 - \cos \theta_1 \sin \theta_2$$

We can use the sum formulas for sine and cosine to derive the formulas for the tangent.

$$\tan(\theta_1 + \theta_2) = \frac{\sin(\theta_1 + \theta_2)}{\cos(\theta_1 + \theta_2)}$$

We can use the sum formulas for sine and cosine to derive the formulas for the tangent.

$$\tan(\theta_1 + \theta_2) = \frac{\sin(\theta_1 + \theta_2)}{\cos(\theta_1 + \theta_2)}$$

$$= \frac{\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2}{\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2}$$

We can use the sum formulas for sine and cosine to derive the formulas for the tangent.

$$\tan(\theta_1 + \theta_2) = \frac{\sin(\theta_1 + \theta_2)}{\cos(\theta_1 + \theta_2)}$$

$$= \frac{\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2}{\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2}$$

Dividing the numerator and denominator by $\cos \theta_1 \cos \theta_2$ gives:

$$\tan(\theta_1 + \theta_2) = \frac{\frac{\sin \theta_1 \cos \theta_2}{\cos \theta_1 \cos \theta_2} + \frac{\cos \theta_1 \sin \theta_2}{\cos \theta_1 \cos \theta_2}}{\frac{\cos \theta_1 \cos \theta_2}{\cos \theta_1 \cos \theta_2} - \frac{\sin \theta_1 \sin \theta_2}{\cos \theta_1 \cos \theta_2}}$$

The expressions simplify to:

$$\tan(\theta_1 + \theta_2) = \frac{\frac{\sin\theta_1\cos\theta_2}{\cos\theta_1\cos\theta_2} + \frac{\cos\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}}{\frac{\cos\theta_1\cos\theta_2}{\cos\theta_1\cos\theta_2} - \frac{\sin\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}} = \frac{\frac{\sin\theta_1}{\cos\theta_1} + \frac{\sin\theta_2}{\cos\theta_1}}{1 - \frac{\sin\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}}$$

The expressions simplify to:

$$\tan(\theta_1 + \theta_2) = \frac{\frac{\sin\theta_1\cos\theta_2}{\cos\theta_1\cos\theta_2} + \frac{\cos\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}}{\frac{\cos\theta_1\cos\theta_2}{\cos\theta_1\cos\theta_2} - \frac{\sin\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}} = \frac{\frac{\sin\theta_1}{\cos\theta_1} + \frac{\sin\theta_2}{\cos\theta_1}}{1 - \frac{\sin\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}}$$

Using the definition of $\tan \theta$, this becomes

$$\tan(\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}$$

The expressions simplify to:

$$\tan(\theta_1 + \theta_2) = \frac{\frac{\sin\theta_1\cos\theta_2}{\cos\theta_1\cos\theta_2} + \frac{\cos\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}}{\frac{\cos\theta_1\cos\theta_2}{\cos\theta_1\cos\theta_2} - \frac{\sin\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}} = \frac{\frac{\sin\theta_1}{\cos\theta_1} + \frac{\sin\theta_2}{\cos\theta_1}}{1 - \frac{\sin\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}}$$

Using the definition of $\tan \theta$, this becomes

$$\tan(\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}$$

A similar argument will show that

$$\tan(\theta_1 - \theta_2) = \frac{\tan \theta_1 - \tan \theta_2}{1 + \tan \theta_1 \tan \theta_2}$$