
The Fundamental Theorem of Calculus
As the name suggests, this result plays a central role in
calculus.
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The reason it is so important is that it relates two seemingly
unrelated problems, finding the slope of the tangent line
and finding the area under a curve, to the process of
differentiation and its reverse, finding an antiderivative.
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The Fundamental Theorem of Calculus
As the name suggests, this result plays a central role in
calculus.

The reason it is so important is that it relates two seemingly
unrelated problems, finding the slope of the tangent line
and finding the area under a curve, to the process of
differentiation and its reverse, finding an antiderivative.

The theorem allows us to find areas under curves without
having to resort to taking limits of Riemann sums.
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The Fundamental Theorem of Calculus
The theorem is stated in two separate parts. The first deals
with functions defined by an equation of the form

g(x) =

∫

x

a

f(t)dt a ≤ x ≤ b

where f is continuous on [a, b].
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The Fundamental Theorem of Calculus
The theorem is stated in two separate parts. The first deals
with functions defined by an equation of the form

g(x) =

∫

x

a

f(t)dt a ≤ x ≤ b

where f is continuous on [a, b].
This form seems unusual because chances are you have
not encountered anything like it before: The independent
variable in the function is the upper limit of integration (or
the right endpoint of the interval on which we integrate).
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The Fundamental Theorem of Calculus

g(x) =

∫

x

a

f(t)dt a ≤ x ≤ b

The variable t is simply a placeholder; it allows us to specify
the function in terms of a variable we will be integrating with
respect to.
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The Fundamental Theorem of Calculus

g(x) =

∫

x

a

f(t)dt a ≤ x ≤ b

The variable t is simply a placeholder; it allows us to specify
the function in terms of a variable we will be integrating with
respect to.

Other than that, t plays no role in evaluating g(x).
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The Fundamental Theorem of Calculus

g(x) =

∫

x

a

f(t)dt

Even more confusing, we will be differentiating g with
respect to x.
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The Fundamental Theorem of Calculus

g(x) =

∫

x

a

f(t)dt

Even more confusing, we will be differentiating g with
respect to x.
Falling back to our basic definition of a derivative,

g′(x) = lim
h→0

g(x + h) − g(x)

h
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The Fundamental Theorem of Calculus

g(x) =

∫

x

a

f(t)dt

Even more confusing, we will be differentiating g with
respect to x.
Falling back to our basic definition of a derivative,

g′(x) = lim
h→0

g(x + h) − g(x)

h

In this case

g′(x) = lim
h→0

∫

x+h

a
f(t)dt −

∫

x

a
f(t)dt

h
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The Fundamental Theorem of Calculus
In this case we can use one of our basic properties of
definite integrals, namely

∫ x+h

a

f(t)dt =

∫ x

a

f(t)dt +

∫ x+h

x

f(t)dt

to simplify the expression

g(x + h) − g(x) =

∫

x+h

a

f(t)dt −

∫

x

a

f(t)dt

to

g(x + h) − g(x) =

∫

x+h

x

f(t)dt
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The Fundamental Theorem of Calculus
Then the difference quotient

g(x + h) − g(x)

h

becomes
g(x + h) − g(x)

h
=

1

h

∫

x+h

x

f(t)dt
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The Fundamental Theorem of Calculus
Because f is continuous on [x, x + h], by the extreme value
theorem there are numbers u and v in [x, x + h] at which f
attains its absolute minimum f(u) = m and maximum
f(v) = M on [x, x + h].
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The Fundamental Theorem of Calculus
Because f is continuous on [x, x + h], by the extreme value
theorem there are numbers u and v in [x, x + h] at which f
attains its absolute minimum f(u) = m and maximum
f(v) = M on [x, x + h].

Another property of definite integrals states (in this case)
that if

m ≤ f(x) ≤ M for x ≤ t ≤ (x + h)

then

f(u) · h = mh ≤

∫ x+h

x

f(t)dt ≤ Mh = f(v) · h
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The Fundamental Theorem of Calculus
Suppose for the sake of argument that h > 0. Then we can
divide all terms by h and preserve the inequalities:

f(u) ≤
1

h

∫

x+h

x

f(t)dt ≤ f(v)
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The Fundamental Theorem of Calculus
Suppose for the sake of argument that h > 0. Then we can
divide all terms by h and preserve the inequalities:

f(u) ≤
1

h

∫

x+h

x

f(t)dt ≤ f(v)

Note that
x ≤ u, v ≤ (x + h)

so
lim
h→0

x ≤ lim
h→0

u, lim
h→0

v ≤ lim
h→0

(x + h)
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The Fundamental Theorem of Calculus
Suppose for the sake of argument that h > 0. Then we can
divide all terms by h and preserve the inequalities:

f(u) ≤
1

h

∫

x+h

x

f(t)dt ≤ f(v)

Note that
x ≤ u, v ≤ (x + h)

so
lim
h→0

x ≤ lim
h→0

u, lim
h→0

v ≤ lim
h→0

(x + h)

Replacing all quantities by their limits, we have

x ≤ lim
h→0

u, lim
h→0

v ≤ x
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The Fundamental Theorem of Calculus
By the squeeze theorem, we can say

lim
h→0

u = x = lim
h→0

v
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The Fundamental Theorem of Calculus
By the squeeze theorem, we can say

lim
h→0

u = x = lim
h→0

v

Because f is continuous on [x, x + h], we can also say that

lim
h→0

f(u) = f(x) = lim
h→0

f(v)
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The Fundamental Theorem of Calculus
Now returning to our inequality,

f(u) ≤
1

h

∫ x+h

x

f(t)dt ≤ f(v)

recall that the middle term is equal to

g(x + h) − g(x)

h
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The Fundamental Theorem of Calculus
Now returning to our inequality,

f(u) ≤
1

h

∫ x+h

x

f(t)dt ≤ f(v)

recall that the middle term is equal to

g(x + h) − g(x)

h

Substituting this and taking limits as h → 0, we get

f(x) = lim
h→0

f(u) ≤ lim
h→0

g(x + h) − g(x)

h
≤ lim

h→0
f(v) = f(x)
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The Fundamental Theorem of Calculus
Now applying the squeeze theorem,

f(x) ≤ lim
h→0

g(x + h) − g(x)

h
≤ f(x)

and so by definition

lim
h→0

g(x + h) − g(x)

h
= g′(x) = f(x)
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The Fundamental Theorem of Calculus
Now applying the squeeze theorem,

f(x) ≤ lim
h→0

g(x + h) − g(x)

h
≤ f(x)

and so by definition

lim
h→0

g(x + h) − g(x)

h
= g′(x) = f(x)

This establishes the first part of the Fundamental Theorem
of Calculus:

if g(x) =

∫ x

a

f(t)dt then g′(x) = f(x)
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Example 1
If

g(x) =

∫ x

1

t2 + 3t − 2 dt

find g′(x)
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Example 1
If

g(x) =

∫ x

1

t2 + 3t − 2 dt

find g′(x)

By the Fundamental Theorem of Calculus (part 1), the
result is just

g′(x) = x2 + 3x − 2
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Example 1
If

g(x) =

∫ x

1

t2 + 3t − 2 dt

find g′(x)

By the Fundamental Theorem of Calculus (part 1), the
result is just

g′(x) = x2 + 3x − 2

VERY IMPORTANT! Note that we DO NOT differentiate the
integrand.
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Example 1
If

g(x) =

∫ x

1

t2 + 3t − 2 dt

find g′(x)

By the Fundamental Theorem of Calculus (part 1), the
result is just

g′(x) = x2 + 3x − 2

VERY IMPORTANT! Note that we DO NOT differentiate the
integrand.

All we need to do is copy it and replace t by x
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Example 2
Find

d

dx

∫

x

0

sin t dt
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Example 2
Find

d

dx

∫

x

0

sin t dt

By the Fundamental Theorem of Calculus (part 1), the
result is just

sin x
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Example 2
Find

d

dx

∫

x

0

sin t dt

By the Fundamental Theorem of Calculus (part 1), the
result is just

sin x

Again, note that we resisted the temptation to differentiate
the integrand, and just copied it replacing t by x.
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Question 1
Suppose

g(x) =

∫

x

a

(t2 − 3t + 2)dt

What is g′(x)?

1. 2x − 3 4. t2 − 3t + 2

2. 2t − 3 5. x2 − 3x + 2

3. 2x − 3 + C 6. None of the above
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Question 1
Suppose

g(x) =

∫

x

a

(t2 − 3t + 2)dt

What is g′(x)?

1. 2x − 3 4. t2 − 3t + 2

2. 2t − 3 5. x2 − 3x + 2

3. 2x − 3 + C 6. None of the above

5. g′(x) = x2 − 3x + 2
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Question 2
Find

d

dx

∫

x

a

(1 + sinh t)dt

1. 1 + sinh x 4. coshx

2. 1 + coshx 5. − coshx

3. 1 + sinh x + C 6. None of the above
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Question 2
Find

d

dx

∫

x

a

(1 + sinh t)dt

1. 1 + sinh x 4. coshx

2. 1 + coshx 5. − coshx

3. 1 + sinh x + C 6. None of the above

1. g′(x) = 1 + sinh x
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The Fundamental Theorem of Calculus
Now for the second form of the Fundamental Theorem.

As with part 1, suppose f is continuous on [a, b]. Then:

∫ b

a

f(x)dx = F (b) − F (a)

Where F is any antiderivative of f , that is, F ′ = f
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Now for the second form of the Fundamental Theorem.
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f(x)dx = F (b) − F (a)
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Example 3
Find

∫ 3

0

x3dx
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Example 3
Find

∫ 3

0

x3dx

By the second version of the fundamental theorem

∫ 3

0

x3dx = F (3) − F (0) where F ′ = f
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Example 3
Find

∫ 3

0

x3dx

By the second version of the fundamental theorem

∫ 3

0

x3dx = F (3) − F (0) where F ′ = f

Using F (x) = x4/4,

∫ 3

0

x3dx =
34

4
−

04

4
=

81

4
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Example 4
Find

∫
π

2

0

sin xdx
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Example 4
Find

∫
π

2

0

sin xdx

By the second version of the fundamental theorem

∫
π

2

0

sin xdx = F
(π

2

)

− F (0) where F ′ = f
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Example 4
Find

∫
π

2

0

sin xdx

By the second version of the fundamental theorem

∫
π

2

0

sin xdx = F
(π

2

)

− F (0) where F ′ = f

Using F (x) = − cos x,

∫
π

2

0

sin xdx = − cos
π

2
− (− cos 0) = 0 − (−1) = 1
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Question 3
Find

∫ 2

1

x2dx

1. 2
3

3
−

1
3

3
= 7

3
4. 2

3

2
−

1
3

2
= 7

2

2. 2
2

2
−

1
2

2
= 3

2
5. 2

2

3
−

1
2

3
= 1

3. 2
3

3
+ 1

3

3
= 9

3
6. None of the above

The Fundamental Theorem of Calculus – p. 19/20



Question 3
Find
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1
3

3
= 7

3
4. 2

3

2
−

1
3

2
= 7

2

2. 2
2

2
−

1
2

2
= 3

2
5. 2

2

3
−

1
2

3
= 1

3. 2
3

3
+ 1

3

3
= 9

3
6. None of the above

1. 2
3

3
−

1
3

3
= 7

3
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Question 4
Find

∫ 2

1

exdx

1. e
2

2
−

e

2
4. e2 − e

2. e2 − 1 5. e2 + e

3. e2x − ex 6. None of the above
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Question 4
Find

∫ 2

1

exdx

1. e
2

2
−

e

2
4. e2 − e

2. e2 − 1 5. e2 + e

3. e2x − ex 6. None of the above

4. e2 − e
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