The Fundamental Theorem of Calculu:

As the name suggests, this result plays a central role in calculus.

The Fundamental Theorem of Calculu

As the name suggests, this result plays a central role in calculus.

The reason it is so important is that it relates two seemingly unrelated problems, finding the slope of the tangent line and finding the area under a curve, to the process of differentiation and its reverse, finding an antiderivative.

The Fundamental Theorem of Calculu

As the name suggests, this result plays a central role in calculus.

The reason it is so important is that it relates two seemingly unrelated problems, finding the slope of the tangent line and finding the area under a curve, to the process of differentiation and its reverse, finding an antiderivative.

The theorem allows us to find areas under curves without having to resort to taking limits of Riemann sums.

The Fundamental Theorem of Calculu

The theorem is stated in two separate parts. The first deals with functions defined by an equation of the form

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

where f is continuous on $[a, b]$.

The Fundamental Theorem of Calculu

The theorem is stated in two separate parts. The first deals with functions defined by an equation of the form

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

where f is continuous on $[a, b]$.
This form seems unusual because chances are you have not encountered anything like it before: The independent variable in the function is the upper limit of integration (or the right endpoint of the interval on which we integrate).

The Fundamental Theorem of Calculu

The theorem is stated in two separate parts. The first deals with functions defined by an equation of the form

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

where f is continuous on $[a, b]$.
This form seems unusual because chances are you have not encountered anything like it before: The independent variable in the function is the upper limit of integration (or the right endpoint of the interval on which we integrate).

The Fundamental Theorem of Calculu

The theorem is stated in two separate parts. The first deals with functions defined by an equation of the form

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

where f is continuous on $[a, b]$.
This form seems unusual because chances are you have not encountered anything like it before: The independent variable in the function is the upper limit of integration (or the right endpoint of the interval on which we integrate).

The Fundamental Theorem of Calculu

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

The variable t is simply a placeholder; it allows us to specify the function in terms of a variable we will be integrating with respect to.

The Fundamental Theorem of Calculu

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

The variable t is simply a placeholder; it allows us to specify the function in terms of a variable we will be integrating with respect to.

Other than that, t plays no role in evaluating $g(x)$.

The Fundamental Theorem of Calculu:

$$
g(x)=\int_{a}^{x} f(t) d t
$$

Even more confusing, we will be differentiating g with respect to x.

The Fundamental Theorem of Calculus

$$
g(x)=\int_{a}^{x} f(t) d t
$$

Even more confusing, we will be differentiating g with respect to x.
Falling back to our basic definition of a derivative,

$$
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
$$

The Fundamental Theorem of Calculu:

$$
g(x)=\int_{a}^{x} f(t) d t
$$

Even more confusing, we will be differentiating g with respect to x.
Falling back to our basic definition of a derivative,

$$
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
$$

In this case

$$
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}
$$

The Fundamental Theorem of Calculu

In this case we can use one of our basic properties of definite integrals, namely

$$
\int_{a}^{x+h} f(t) d t=\int_{a}^{x} f(t) d t+\int_{x}^{x+h} f(t) d t
$$

to simplify the expression

$$
g(x+h)-g(x)=\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t
$$

to

$$
g(x+h)-g(x)=\int_{x}^{x+h} f(t) d t
$$

The Fundamental Theorem of Calculu:

Then the difference quotient

$$
\frac{g(x+h)-g(x)}{h}
$$

becomes

$$
\frac{g(x+h)-g(x)}{h}=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

The Fundamental Theorem of Calculus

Because f is continuous on $[x, x+h]$, by the extreme value theorem there are numbers u and v in $[x, x+h]$ at which f attains its absolute minimum $f(u)=m$ and maximum $f(v)=M$ on $[x, x+h]$.

The Fundamental Theorem of Calculus

Because f is continuous on $[x, x+h]$, by the extreme value theorem there are numbers u and v in $[x, x+h]$ at which f attains its absolute minimum $f(u)=m$ and maximum $f(v)=M$ on $[x, x+h]$.

Another property of definite integrals states (in this case) that if

$$
m \leq f(x) \leq M \quad \text { for } \quad x \leq t \leq(x+h)
$$

then

$$
f(u) \cdot h=m h \leq \int_{x}^{x+h} f(t) d t \leq M h=f(v) \cdot h
$$

The Fundamental Theorem of Calculu

Suppose for the sake of argument that $h>0$. Then we can divide all terms by h and preserve the inequalities:

$$
f(u) \leq \frac{1}{h} \int_{x}^{x+h} f(t) d t \leq f(v)
$$

The Fundamental Theorem of Calculus

Suppose for the sake of argument that $h>0$. Then we can divide all terms by h and preserve the inequalities:

$$
f(u) \leq \frac{1}{h} \int_{x}^{x+h} f(t) d t \leq f(v)
$$

Note that

$$
x \leq u, v \leq(x+h)
$$

so

$$
\lim _{h \rightarrow 0} x \leq \lim _{h \rightarrow 0} u, \lim _{h \rightarrow 0} v \leq \lim _{h \rightarrow 0}(x+h)
$$

The Fundamental Theorem of Calculus

Suppose for the sake of argument that $h>0$. Then we can divide all terms by h and preserve the inequalities:

$$
f(u) \leq \frac{1}{h} \int_{x}^{x+h} f(t) d t \leq f(v)
$$

Note that

$$
x \leq u, v \leq(x+h)
$$

so

$$
\lim _{h \rightarrow 0} x \leq \lim _{h \rightarrow 0} u, \lim _{h \rightarrow 0} v \leq \lim _{h \rightarrow 0}(x+h)
$$

Replacing all quantities by their limits, we have

$$
x \leq \lim _{h \rightarrow 0} u, \lim _{h \rightarrow 0} v \leq x
$$

The Fundamental Theorem of Calculus

By the squeeze theorem, we can say

$$
\lim _{h \rightarrow 0} u=x=\lim _{h \rightarrow 0} v
$$

The Fundamental Theorem of Calculus

By the squeeze theorem, we can say

$$
\lim _{h \rightarrow 0} u=x=\lim _{h \rightarrow 0} v
$$

Because f is continuous on $[x, x+h]$, we can also say that

$$
\lim _{h \rightarrow 0} f(u)=f(x)=\lim _{h \rightarrow 0} f(v)
$$

The Fundamental Theorem of Calculu:

Now returning to our inequality,

$$
f(u) \leq \frac{1}{h} \int_{x}^{x+h} f(t) d t \leq f(v)
$$

recall that the middle term is equal to

$$
\frac{g(x+h)-g(x)}{h}
$$

The Fundamental Theorem of Calculus

Now returning to our inequality,

$$
f(u) \leq \frac{1}{h} \int_{x}^{x+h} f(t) d t \leq f(v)
$$

recall that the middle term is equal to

$$
\frac{g(x+h)-g(x)}{h}
$$

Substituting this and taking limits as $h \rightarrow 0$, we get

$$
f(x)=\lim _{h \rightarrow 0} f(u) \leq \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \leq \lim _{h \rightarrow 0} f(v)=f(x)
$$

The Fundamental Theorem of Calculu:

Now applying the squeeze theorem,

$$
f(x) \leq \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \leq f(x)
$$

and so by definition

$$
\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=g^{\prime}(x)=f(x)
$$

The Fundamental Theorem of Calculu

Now applying the squeeze theorem,

$$
f(x) \leq \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \leq f(x)
$$

and so by definition

$$
\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=g^{\prime}(x)=f(x)
$$

This establishes the first part of the Fundamental Theorem of Calculus:

$$
\text { if } \quad g(x)=\int_{a}^{x} f(t) d t \text { then } g^{\prime}(x)=f(x)
$$

Example 1

If

$$
g(x)=\int_{1}^{x} t^{2}+3 t-2 d t
$$

find $g^{\prime}(x)$

Example 1

If

$$
g(x)=\int_{1}^{x} t^{2}+3 t-2 d t
$$

find $g^{\prime}(x)$
By the Fundamental Theorem of Calculus (part 1), the result is just

$$
g^{\prime}(x)=x^{2}+3 x-2
$$

Example 1

If

$$
g(x)=\int_{1}^{x} t^{2}+3 t-2 d t
$$

find $g^{\prime}(x)$
By the Fundamental Theorem of Calculus (part 1), the result is just

$$
g^{\prime}(x)=x^{2}+3 x-2
$$

VERY IMPORTANT! Note that we DO NOT differentiate the integrand.

Example 1

If

$$
g(x)=\int_{1}^{x} t^{2}+3 t-2 d t
$$

find $g^{\prime}(x)$
By the Fundamental Theorem of Calculus (part 1), the result is just

$$
g^{\prime}(x)=x^{2}+3 x-2
$$

VERY IMPORTANT! Note that we DO NOT differentiate the integrand.

All we need to do is copy it and replace t by x

Example 2

Find

$$
\frac{d}{d x} \int_{0}^{x} \sin t d t
$$

Example 2

Find

$$
\frac{d}{d x} \int_{0}^{x} \sin t d t
$$

By the Fundamental Theorem of Calculus (part 1), the result is just
$\sin x$

Example 2

Find

$$
\frac{d}{d x} \int_{0}^{x} \sin t d t
$$

By the Fundamental Theorem of Calculus (part 1), the result is just

$\sin x$

Again, note that we resisted the temptation to differentiate the integrand, and just copied it replacing t by x.

Question 1

Suppose

$$
g(x)=\int_{a}^{x}\left(t^{2}-3 t+2\right) d t
$$

What is $g^{\prime}(x)$?

1. $2 x-3$
2. $2 t-3$
3. $t^{2}-3 t+2$
4. $x^{2}-3 x+2$
5. $2 x-3+C$
6. None of the above

Question 1

Suppose

$$
g(x)=\int_{a}^{x}\left(t^{2}-3 t+2\right) d t
$$

What is $g^{\prime}(x)$?

1. $2 x-3$
2. $2 t-3$
3. $2 x-3+C$ 6. None of the above
4. $t^{2}-3 t+2$
5. $x^{2}-3 x+2$
6. $g^{\prime}(x)=x^{2}-3 x+2$

Question 2

Find

$$
\frac{d}{d x} \int_{a}^{x}(1+\sinh t) d t
$$

1. $1+\sinh x$
2. $1+\cosh x$
3. $1+\sinh x+C$
4. $\cosh x$
5. $-\cosh x$
6. None of the above

Question 2

Find

$$
\frac{d}{d x} \int_{a}^{x}(1+\sinh t) d t
$$

1. $1+\sinh x$
2. $1+\cosh x$
3. $1+\sinh x+C$
4. $\cosh x$
5. $-\cosh x$
6. None of the above
7. $g^{\prime}(x)=1+\sinh x$

The Fundamental Theorem of Calculu:

Now for the second form of the Fundamental Theorem.
As with part 1, suppose f is continuous on $[a, b]$. Then:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Where F is any antiderivative of f, that is, $F^{\prime}=f$

The Fundamental Theorem of Calculu:

Now for the second form of the Fundamental Theorem.
As with part 1, suppose f is continuous on $[a, b]$. Then:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Where F is any antiderivative of f, that is, $F^{\prime}=f$

Example 3

Find

$$
\int_{0}^{3} x^{3} d x
$$

Example 3

Find

$$
\int_{0}^{3} x^{3} d x
$$

By the second version of the fundamental theorem

$$
\int_{0}^{3} x^{3} d x=F(3)-F(0) \quad \text { where } \quad F^{\prime}=f
$$

Example 3

Find

$$
\int_{0}^{3} x^{3} d x
$$

By the second version of the fundamental theorem

$$
\int_{0}^{3} x^{3} d x=F(3)-F(0) \quad \text { where } \quad F^{\prime}=f
$$

Using $F(x)=x^{4} / 4$,

$$
\int_{0}^{3} x^{3} d x=\frac{3^{4}}{4}-\frac{0^{4}}{4}=\frac{81}{4}
$$

Example 4

Find

$$
\int_{0}^{\frac{\pi}{2}} \sin x d x
$$

Example 4

Find

$$
\int_{0}^{\frac{\pi}{2}} \sin x d x
$$

By the second version of the fundamental theorem

$$
\int_{0}^{\frac{\pi}{2}} \sin x d x=F\left(\frac{\pi}{2}\right)-F(0) \quad \text { where } \quad F^{\prime}=f
$$

Example 4

Find

$$
\int_{0}^{\frac{\pi}{2}} \sin x d x
$$

By the second version of the fundamental theorem

$$
\int_{0}^{\frac{\pi}{2}} \sin x d x=F\left(\frac{\pi}{2}\right)-F(0) \quad \text { where } \quad F^{\prime}=f
$$

Using $F(x)=-\cos x$,

$$
\int_{0}^{\frac{\pi}{2}} \sin x d x=-\cos \frac{\pi}{2}-(-\cos 0) \quad=\quad 0-(-1)=1
$$

Question 3

Find

$$
\int_{1}^{2} x^{2} d x
$$

1. $\frac{2^{3}}{3}-\frac{1^{3}}{3}=\frac{7}{3}$
2. $\quad \frac{2^{3}}{2}-\frac{1^{3}}{2}=\frac{7}{2}$
3. $\frac{2^{2}}{2}-\frac{1^{2}}{2}=\frac{3}{2}$
4. $\quad \frac{2^{2}}{3}-\frac{1^{2}}{3}=1$
5. $\frac{2^{3}}{3}+\frac{1^{3}}{3}=\frac{9}{3}$
6. None of the above

Question 3

Find

$$
\int_{1}^{2} x^{2} d x
$$

1. $\frac{2^{3}}{3}-\frac{1^{3}}{3}=\frac{7}{3}$
2. $\quad \frac{2^{3}}{2}-\frac{1^{3}}{2}=\frac{7}{2}$
3. $\quad \frac{2^{2}}{2}-\frac{1^{2}}{2}=\frac{3}{2}$
4. $\quad \frac{2^{2}}{3}-\frac{1^{2}}{3}=1$
5. $\frac{2^{3}}{3}+\frac{1^{3}}{3}=\frac{9}{3}$
6. None of the above
7. $\frac{2^{3}}{3}-\frac{1^{3}}{3}=\frac{7}{3}$

Question 4

Find

$$
\int_{1}^{2} e^{x} d x
$$

1. $\frac{e^{2}}{2}-\frac{e}{2}$
2. $e^{2}-e$
3. $e^{2}-1$
4. $e^{2}+e$
5. $e^{2 x}-e^{x} \quad$ 6. None of the above

Question 4

Find

$$
\int_{1}^{2} e^{x} d x
$$

1. $\frac{e^{2}}{2}-\frac{e}{2}$
2. $e^{2}-e$
3. $e^{2}-1$
4. $e^{2}+e$
5. $e^{2 x}-e^{x} \quad$ 6. None of the above
6. $e^{2}-e$
