The Definite Integral

We have previously introduced the idea of an antiderivative of a function f as a function whose derivative is equal to f on some interval I :

$$
F^{\prime}(x)=f(x) \quad \text { for all } \quad x \in I
$$

The Definite Integral

We have previously introduced the idea of an antiderivative of a function f as a function whose derivative is equal to f on some interval I :

$$
F^{\prime}(x)=f(x) \quad \text { for all } \quad x \in I
$$

An antiderivative is a function that is related to our original function f in that f is its derivative.

The Definite Integral

We have previously introduced the idea of an antiderivative of a function f as a function whose derivative is equal to f on some interval I :

$$
F^{\prime}(x)=f(x) \quad \text { for all } \quad x \in I
$$

An antiderivative is a function that is related to our original function f in that f is its derivative.

We now introduce a related concept in terms of the area under the graph of a function f know as the definite integral of f

The Definite Integral

If f is defined on an interval $[a, b]$, the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

if the limit exists. Some explanation of the notation is required.

The Definite Integral

If f is defined on an interval $[a, b]$, the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

if the limit exists. Some explanation of the notation is required.
We assume the interval $[a, b]$ is divided into n equal parts of length $\Delta x=(b-a) / n$.

The Definite Integral

If f is defined on an interval $[a, b]$, the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

if the limit exists. Some explanation of the notation is required.
We assume the interval $[a, b]$ is divided into n equal parts of length $\Delta x=(b-a) / n$.
We label the endpoints of the intervals
$a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b$

The Definite Integral

If f is defined on an interval $[a, b]$, the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

if the limit exists. Some explanation of the notation is required.
We assume the interval $[a, b]$ is divided into n equal parts of length $\Delta x=(b-a) / n$.
We label the endpoints of the intervals
$a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b$
We define x_{i}^{*} to be any point in the $i^{\text {th }}$ interval:
$x_{i-1} \leq x_{i}^{*} \leq x_{i}$

The Definite Integral

The precise statement of the limit process is as follows:
For every $\epsilon>0$, it is possible to find an integer N such that

$$
\left|\int_{a}^{b} f(x) d x-\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x\right|<\epsilon
$$

whenever $n>N$ regardless of the choice of the x_{i}^{*} values.

The Definite Integral

The precise statement of the limit process is as follows:
For every $\epsilon>0$, it is possible to find an integer N such that

$$
\left|\int_{a}^{b} f(x) d x-\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x\right|<\epsilon
$$

whenever $n>N$ regardless of the choice of the x_{i}^{*} values.
When this is true, we say that f is integrable on $[a, b]$

The Definite Integral

The precise statement of the limit process is as follows:
For every $\epsilon>0$, it is possible to find an integer N such that

$$
\left|\int_{a}^{b} f(x) d x-\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x\right|<\epsilon
$$

whenever $n>N$ regardless of the choice of the x_{i}^{*} values.
When this is true, we say that f is integrable on $[a, b]$
Note that unlike an antiderivative, the definite integral, if it exists, is a number

The Definite Integral

The sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

is known as a Riemann sum

The Definite Integral

The sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

is known as a Riemann sum
The exact nature of the x_{i}^{*} values is somewhat vague. In fact, we may choose them to be the right endpoints of the intervals: Let

$$
x_{i}^{*}=a+i \cdot \Delta x
$$

The Definite Integral

The sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

is known as a Riemann sum
The exact nature of the x_{i}^{*} values is somewhat vague. In fact, we may choose them to be the right endpoints of the intervals: Let

$$
x_{i}^{*}=a+i \cdot \Delta x
$$

Then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

