
The Definite Integral
We have previously introduced the idea of an antiderivative
of a function f as a function whose derivative is equal to f
on some interval I:

F ′(x) = f(x) for all x ∈ I
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The Definite Integral
We have previously introduced the idea of an antiderivative
of a function f as a function whose derivative is equal to f
on some interval I:

F ′(x) = f(x) for all x ∈ I

An antiderivative is a function that is related to our original
function f in that f is its derivative.

We now introduce a related concept in terms of the area
under the graph of a function f know as the definite integral
of f
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The Definite Integral
If f is defined on an interval [a, b], the definite integral of f
from a to b is

∫

b

a

f(x)dx = lim
n→∞

n
∑

i=1

f (x∗

i ) ∆x

if the limit exists. Some explanation of the notation is
required.
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f(x)dx = lim
n→∞

n
∑

i=1

f (x∗

i ) ∆x

if the limit exists. Some explanation of the notation is
required.
We assume the interval [a, b] is divided into n equal parts of
length ∆x = (b − a)/n.
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If f is defined on an interval [a, b], the definite integral of f
from a to b is
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f(x)dx = lim
n→∞

n
∑
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f (x∗

i ) ∆x

if the limit exists. Some explanation of the notation is
required.
We assume the interval [a, b] is divided into n equal parts of
length ∆x = (b − a)/n.
We label the endpoints of the intervals
a = x0, x1, x2, . . . , xn = b
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The Definite Integral
If f is defined on an interval [a, b], the definite integral of f
from a to b is

∫

b

a

f(x)dx = lim
n→∞

n
∑

i=1

f (x∗

i ) ∆x

if the limit exists. Some explanation of the notation is
required.
We assume the interval [a, b] is divided into n equal parts of
length ∆x = (b − a)/n.
We label the endpoints of the intervals
a = x0, x1, x2, . . . , xn = b

We define x∗

i
to be any point in the ith interval:

xi−1 ≤ x∗

i
≤ xi
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The Definite Integral
The precise statement of the limit process is as follows:

For every ǫ > 0, it is possible to find an integer N such that
∣

∣

∣

∣

∣

∫ b

a

f(x)dx −

n
∑

i=1

f (x∗

i ) ∆x

∣

∣

∣

∣

∣

< ǫ

whenever n > N regardless of the choice of the x∗

i
values.
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∣

∣

∣

∣

∣

< ǫ

whenever n > N regardless of the choice of the x∗

i
values.

When this is true, we say that f is integrable on [a, b]
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The Definite Integral
The precise statement of the limit process is as follows:

For every ǫ > 0, it is possible to find an integer N such that
∣

∣

∣

∣

∣

∫ b

a

f(x)dx −

n
∑

i=1

f (x∗

i ) ∆x

∣

∣

∣

∣

∣

< ǫ

whenever n > N regardless of the choice of the x∗

i
values.

When this is true, we say that f is integrable on [a, b]

Note that unlike an antiderivative, the definite integral, if it
exists, is a number
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The Definite Integral
The sum

n
∑

i=1

f (x∗

i ) ∆x

is known as a Riemann sum
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The Definite Integral
The sum

n
∑

i=1

f (x∗

i ) ∆x

is known as a Riemann sum

The exact nature of the x∗

i
values is somewhat vague. In

fact, we may choose them to be the right endpoints of the
intervals: Let

x∗

i = a + i · ∆x
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The Definite Integral
The sum

n
∑

i=1

f (x∗

i ) ∆x

is known as a Riemann sum

The exact nature of the x∗

i
values is somewhat vague. In

fact, we may choose them to be the right endpoints of the
intervals: Let

x∗

i = a + i · ∆x

Then
∫ b

a

f(x)dx = lim
n→∞

n
∑

i=1

f (xi) ∆x
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