A function F is called an **antiderivative** of f on an interval I if

F'(x) = f(x) for all $x \in I$

A function F is called an **antiderivative** of f on an interval I if

$$F'(x) = f(x)$$
 for all $x \in I$

Example:

 $F(x) = x^2 - 3x + 2$ is an antiderivative of f(x) = 2x - 3 on \mathbb{R}

A function F is called an **antiderivative** of f on an interval I if

$$F'(x) = f(x)$$
 for all $x \in I$

Example:

 $F(x) = x^2 - 3x + 2$ is an antiderivative of f(x) = 2x - 3 on \mathbb{R} Example:

 $F(x) = x^2 - 3x - 5$ is an antiderivative of f(x) = 2x - 3 on \mathbb{R}

A function F is called an **antiderivative** of f on an interval I if

$$F'(x) = f(x)$$
 for all $x \in I$

Example:

 $F(x) = x^2 - 3x + 2$ is an antiderivative of f(x) = 2x - 3 on \mathbb{R} Example:

 $F(x) = x^2 - 3x - 5$ is an antiderivative of f(x) = 2x - 3 on \mathbb{R}

In fact, for any $C \in \mathbb{R}$,

 $F(x) = x^2 - 3x + C$ is an antiderivative of f(x) = 2x - 3 on \mathbb{R}

Recall Corollary 7 of Section 4.2:

If f'(x) = g'(x) for all x on in interval (a, b), then

$$f(x) = g(x) + C \quad \text{on} \quad (a, b)$$

Recall Corollary 7 of Section 4.2:

If f'(x) = g'(x) for all x on in interval (a, b), then

$$f(x) = g(x) + C \quad \text{on} \quad (a, b)$$

Applied to antiderivatives, it says that any two antiderivatives of a function differ by a constant:

If F'(x) = G'(x) for all x on in interval (a, b), then

$$F(x) = G(x) + C \quad \text{on} \quad (a,b)$$

It is customary to write the most general antiderivative in the form of a specific antiderivative plus a constant *C*

F(x) + C

It is customary to write the most general antiderivative in the form of a specific antiderivative plus a constant C

F(x) + C

In the case of the previous example, the most general antiderivative of

$$f(x) = 2x - 3$$

is

$$F(x) = x^2 - 3x + C$$

Which of the following is an antiderivative of

 $f(x) = x^4$

- **1.** $f(x) = x^5$ **4.** $f(x) = 5x^4$
- **2.** $f(x) = 4x^5$ **5.** $f(x) = x^4/4$

- 3. $f(x) = x^5/5$ 6. None of the above

Which of the following is an antiderivative of

 $f(x) = x^4$

- **1.** $f(x) = x^5$ **4.** $f(x) = 5x^4$

- **2.** $f(x) = 4x^5$ **5.** $f(x) = x^4/4$
- 3. $f(x) = x^5/5$ 6. None of the above

3.

Which of the following is an antiderivative of

$$f(x) = 3x^2 + 2x + 1$$

1.
$$f(x) = x^3 + x^2 + x + 2$$

2. $f(x) = x^3 + x^2 + 2x + 1$
3. $f(x) = 2x^3 + x^2 + x + 2$

- 4. $f(x) = x^3 + x^2 + x 1$
- 5. 1 and 4
- 6. None of the above

Which of the following is an antiderivative of

$$f(x) = 3x^2 + 2x + 1$$

1.
$$f(x) = x^3 + x^2 + x + 2$$

2. $f(x) = x^3 + x^2 + 2x + 1$
4. $f(x) = x^3 + x^2 + 2x + 1$
5. 1 and 4

3.
$$f(x) = 2x^3 + x^2 + x + 2$$

- 4. $f(x) = x^3 + x^2 + x 1$
- 6. None of the above

5. (1 and 4)

An equation that involves derivatives of a function is called a **differential equation**:

$$f'(x) = 3 - 4x$$

An equation that involves derivatives of a function is called a **differential equation**:

$$f'(x) = 3 - 4x$$

The solution to a differential equation, if it has one, can be written as a function plus a constant C

$$f(x) = 3x - 2x^2 + C$$

Alternatively, a differential equation may include an extra condition that uniquely determines *C*:

$$f'(x) = 3 - 4x$$
 and $f(1) = 0$

Alternatively, a differential equation may include an extra condition that uniquely determines *C*:

$$f'(x) = 3 - 4x$$
 and $f(1) = 0$

$$f(x) = 3x - 2x^2 + C$$
 and $f(1) = 0$

impies that

a

$$3 \cdot 1 - 2 \cdot 1^2 + C = 0 \quad \text{so} \quad 1 + C = 0 \quad \text{and} \quad C = -1$$
 nd

$$f(x) = 3x - 2x^2 - 1$$

Find a function satisfying

f'(x) = 2x - 8 and f(0) = 1

1.
$$f(x) = x^2 - 8x$$

2. $f(x) = x^2 - 8x + 2$
3. $f(x) = x^2 - 8x + 4$
4. $f(x) = x^2 - 8x + 3$
5. $f(x) = x^2 - 8x + 1$
6. None of the above

Find a function satisfying

f'(x) = 2x - 8 and f(0) = 1

1.
$$f(x) = x^2 - 8x$$

2. $f(x) = x^2 - 8x + 2$
3. $f(x) = x^2 - 8x + 4$
4. $f(x) = x^2 - 8x + 3$
5. $f(x) = x^2 - 8x + 1$
6. None of the above

5.
$$f(x) = x^2 - 8x + 1$$

Straight Line Motion

The velocity of a particle is the time derivative of position. Given a velocity function,

$$v(t) = 12 + t$$

the position function is an antiderivative of v(t):

$$s(t) = 12t + \frac{t^2}{2} + C$$

Straight Line Motion

The velocity of a particle is the time derivative of position. Given a velocity function,

$$v(t) = 12 + t$$

the position function is an antiderivative of v(t):

$$s(t) = 12t + \frac{t^2}{2} + C$$

If we are given an initial position, the constant *C* is determined: Suppose s(0) = 12. Then

$$s(t) = 12t + \frac{t^2}{2} + 12$$

A particle moves in a straight line with velocity function

$$v(t) = 3t^2 + 6t + 1$$

Find the position function s(t) given that s(0) = 3

1.
$$s(t) = t^3 + 3t^2 + t + 5$$

2. $s(t) = t^3 + 3t^2 + t + 3$
3. $s(t) = t^3 + 3t^2 + t + 1$

- 4. $s(t) = t^3 + 3t^2 + t + 2$
- 5. $s(t) = t^3 + 3t^2 + t + 4$
- 6. None of the above

A particle moves in a straight line with velocity function

$$v(t) = 3t^2 + 6t + 1$$

Find the position function s(t) given that s(0) = 3

1.
$$s(t) = t^3 + 3t^2 + t + 5$$

2. $s(t) = t^3 + 3t^2 + t + 3$
3. $s(t) = t^3 + 3t^2 + t + 1$

- 4. $s(t) = t^3 + 3t^2 + t + 2$
- 5. $s(t) = t^3 + 3t^2 + t + 4$
- 6. None of the above

2
$$s(t) = t^3 + 3t^2 + t + 3$$

Sometimes ingenuity is required to find antiderivatives: Find an antiderivative of

 $x^2 \cos x + 2x \sin x$

Sometimes ingenuity is required to find antiderivatives: Find an antiderivative of

 $x^2 \cos x + 2x \sin x$

Solution:

 $x^2 \sin x$

In some cases it may not be possible to find an antiderivative:

Find an antiderivative of

$$f(x) = e^{-x^2}$$

In some cases it may not be possible to find an antiderivative:

Find an antiderivative of

$$f(x) = e^{-x^2}$$

Solution: This function has no antiderivative.