Antiderivatives

A function F is called an antiderivative of f on an interval I if

$$
F^{\prime}(x)=f(x) \quad \text { for all } x \in I
$$

Antiderivatives

A function F is called an antiderivative of f on an interval I if

$$
F^{\prime}(x)=f(x) \quad \text { for all } x \in I
$$

Example:
$F(x)=x^{2}-3 x+2$ is an antiderivative of $f(x)=2 x-3$ on \mathbb{R}

Antiderivatives

A function F is called an antiderivative of f on an interval I if

$$
F^{\prime}(x)=f(x) \quad \text { for all } x \in I
$$

Example:
$F(x)=x^{2}-3 x+2$ is an antiderivative of $f(x)=2 x-3$ on \mathbb{R}
Example:
$F(x)=x^{2}-3 x-5$ is an antiderivative of $f(x)=2 x-3$ on \mathbb{R}

Antiderivatives

A function F is called an antiderivative of f on an interval I if

$$
F^{\prime}(x)=f(x) \quad \text { for all } x \in I
$$

Example:
$F(x)=x^{2}-3 x+2$ is an antiderivative of $f(x)=2 x-3$ on \mathbb{R}
Example:
$F(x)=x^{2}-3 x-5$ is an antiderivative of $f(x)=2 x-3$ on \mathbb{R}
In fact, for any $C \in \mathbb{R}$,
$F(x)=x^{2}-3 x+C$ is an antiderivative of $f(x)=2 x-3$ on \mathbb{R}

Antiderivatives

Recall Corollary 7 of Section 4.2:
If $f^{\prime}(x)=g^{\prime}(x)$ for all x on in interval (a, b), then

$$
f(x)=g(x)+C \quad \text { on } \quad(a, b)
$$

Antiderivatives

Recall Corollary 7 of Section 4.2:
If $f^{\prime}(x)=g^{\prime}(x)$ for all x on in interval (a, b), then

$$
f(x)=g(x)+C \quad \text { on } \quad(a, b)
$$

Applied to antiderivatives, it says that any two antiderivatives of a function differ by a constant:

If $F^{\prime}(x)=G^{\prime}(x)$ for all x on in interval (a, b), then

$$
F(x)=G(x)+C \quad \text { on } \quad(a, b)
$$

Antiderivatives

It is customary to write the most general antiderivative in the form of a specific antiderivative plus a constant C

$$
F(x)+C
$$

Antiderivatives

It is customary to write the most general antiderivative in the form of a specific antiderivative plus a constant C

$$
F(x)+C
$$

In the case of the previous example, the most general antiderivative of

$$
f(x)=2 x-3
$$

is

$$
F(x)=x^{2}-3 x+C
$$

Question 1

Which of the following is an antiderivative of

$$
f(x)=x^{4}
$$

1. $f(x)=x^{5}$
2. $f(x)=5 x^{4}$
3. $f(x)=4 x^{5}$
4. $f(x)=x^{4} / 4$
5. $f(x)=x^{5} / 5$
6. None of the above

Question 1

Which of the following is an antiderivative of

$$
f(x)=x^{4}
$$

1. $f(x)=x^{5}$
2. $f(x)=5 x^{4}$
3. $f(x)=4 x^{5}$
4. $f(x)=x^{4} / 4$
5. $f(x)=x^{5} / 5$
6. None of the above
7.

Question 2

Which of the following is an antiderivative of

$$
f(x)=3 x^{2}+2 x+1
$$

1. $f(x)=x^{3}+x^{2}+x+2$
2. $f(x)=x^{3}+x^{2}+x-1$
3. $f(x)=x^{3}+x^{2}+2 x+1 \quad$ 5. 1 and 4
4. $f(x)=2 x^{3}+x^{2}+x+2$
5. None of the above

Question 2

Which of the following is an antiderivative of

$$
f(x)=3 x^{2}+2 x+1
$$

1. $f(x)=x^{3}+x^{2}+x+2$
2. $f(x)=x^{3}+x^{2}+x-1$
3. $f(x)=x^{3}+x^{2}+2 x+1$
4. $f(x)=2 x^{3}+x^{2}+x+2$
5. 1 and 4
6. None of the above
7. (1 and 4)

Differential Equations

An equation that involves derivatives of a function is called a differential equation:

$$
f^{\prime}(x)=3-4 x
$$

Differential Equations

An equation that involves derivatives of a function is called a differential equation:

$$
f^{\prime}(x)=3-4 x
$$

The solution to a differential equation, if it has one, can be written as a function plus a constant C

$$
f(x)=3 x-2 x^{2}+C
$$

Differential Equations

Alternatively, a differential equation may include an extra condition that uniquely determines C :

$$
f^{\prime}(x)=3-4 x \quad \text { and } \quad f(1)=0
$$

Differential Equations

Alternatively, a differential equation may include an extra condition that uniquely determines C :

$$
f^{\prime}(x)=3-4 x \quad \text { and } \quad f(1)=0
$$

$$
f(x)=3 x-2 x^{2}+C \quad \text { and } \quad f(1)=0
$$

impies that

$$
3 \cdot 1-2 \cdot 1^{2}+C=0 \quad \text { so } \quad 1+C=0 \quad \text { and } \quad C=-1
$$

and

$$
f(x)=3 x-2 x^{2}-1
$$

Question 3

Find a function satisfying

$$
f^{\prime}(x)=2 x-8 \quad \text { and } \quad f(0)=1
$$

1. $f(x)=x^{2}-8 x$ 4. $f(x)=x^{2}-8 x+3$
2. $f(x)=x^{2}-8 x+2$ 5. $f(x)=x^{2}-8 x+1$
3. $f(x)=x^{2}-8 x+4 \quad$ 6. None of the above

Question 3

Find a function satisfying

$$
f^{\prime}(x)=2 x-8 \quad \text { and } \quad f(0)=1
$$

1. $f(x)=x^{2}-8 x \quad$ 4. $f(x)=x^{2}-8 x+3$
2. $f(x)=x^{2}-8 x+2$ 5. $f(x)=x^{2}-8 x+1$
3. $f(x)=x^{2}-8 x+4 \quad$ 6. None of the above
4. $f(x)=x^{2}-8 x+1$

Straight Line Motion

The velocity of a particle is the time derivative of position. Given a velocity function,

$$
v(t)=12+t
$$

the position function is an antiderivative of $v(t)$:

$$
s(t)=12 t+\frac{t^{2}}{2}+C
$$

Straight Line Motion

The velocity of a particle is the time derivative of position. Given a velocity function,

$$
v(t)=12+t
$$

the position function is an antiderivative of $v(t)$:

$$
s(t)=12 t+\frac{t^{2}}{2}+C
$$

If we are given an initial position, the constant C is determined: Suppose $s(0)=12$. Then

$$
s(t)=12 t+\frac{t^{2}}{2}+12
$$

Question 4

A particle moves in a straight line with velocity function

$$
v(t)=3 t^{2}+6 t+1
$$

Find the position function $s(t)$ given that $s(0)=3$

1. $s(t)=t^{3}+3 t^{2}+t+5$
2. $s(t)=t^{3}+3 t^{2}+t+2$
3. $s(t)=t^{3}+3 t^{2}+t+3$
4. $s(t)=t^{3}+3 t^{2}+t+4$
5. $s(t)=t^{3}+3 t^{2}+t+1$
6. None of the above

Question 4

A particle moves in a straight line with velocity function

$$
v(t)=3 t^{2}+6 t+1
$$

Find the position function $s(t)$ given that $s(0)=3$

$$
\begin{array}{lll}
\text { 1. } & s(t)=t^{3}+3 t^{2}+t+5 & \text { 4. } \\
\text { 2. } & s(t)=t^{3}+3 t^{2}+t+2 \\
\text { 3. } & s(t)=t^{3}+3 t^{2}+t+3 & \text { 5. } \\
& s(t)=t^{3}+3 t^{2}+t+1 & \text { 6. None of the above } \\
\text { 2 } s(t)=t^{3}+3 t^{2}+t+3 & & \\
&
\end{array}
$$

Antiderivatives

Sometimes ingenuity is required to find antiderivatives: Find an antiderivative of

$$
x^{2} \cos x+2 x \sin x
$$

Antiderivatives

Sometimes ingenuity is required to find antiderivatives: Find an antiderivative of

$$
x^{2} \cos x+2 x \sin x
$$

Solution:
$x^{2} \sin x$

Antiderivatives

In some cases it may not be possible to find an antiderivative:
Find an antiderivative of

$$
f(x)=e^{-x^{2}}
$$

Antiderivatives

In some cases it may not be possible to find an antiderivative:
Find an antiderivative of

$$
f(x)=e^{-x^{2}}
$$

Solution: This function has no antiderivative.

