Newton's Method

There is no general algebraic technique for solving an equation like

$$
f(x)=0
$$

Newton's Method

There is no general algebraic technique for solving an equation like

$$
f(x)=0
$$

Even for relatively simple functions like polynomials, there is no closed algebraic solution if the degree of the polynomial is greater than four.

Newton's Method

There is no general algebraic technique for solving an equation like

$$
f(x)=0
$$

Even for relatively simple functions like polynomials, there is no closed algebraic solution if the degree of the polynomial is greater than four.
An alternative to an algebraic solution is a numerical solution.

Newton's Method

There is no general algebraic technique for solving an equation like

$$
f(x)=0
$$

Even for relatively simple functions like polynomials, there is no closed algebraic solution if the degree of the polynomial is greater than four.
An alternative to an algebraic solution is a numerical solution.

A numerical solution is a series of computations designed to produce an approximately correct numerical value for a solution to the equation.

Newton's Method

Typically, numerical techniques involve an initial guess followed by iteration.

Newton's Method

Typically, numerical techniques involve an initial guess followed by iteration.
The initial guess is generally labelled x_{0}

Newton's Method

Typically, numerical techniques involve an initial guess followed by iteration.
The initial guess is generally labelled x_{0}
Subsequent approximations are computed by a recursion formula, which gives the next approximation as a function of the previous approximations.

Newton's Method

Typically, numerical techniques involve an initial guess followed by iteration.
The initial guess is generally labelled x_{0}
Subsequent approximations are computed by a recursion formula, which gives the next approximation as a function of the previous approximations.

For Newton's method, the recursion formula is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton's Method

Let's examine the recursion formula more closely:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton's Method

Let's examine the recursion formula more closely:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

The equation of the line tangent to the graph of $f(x)$ at $x=x_{n}$ is:
$y-f\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right) \quad$ or $\quad y=f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)+f\left(x_{n}\right)$

Newton's Method

Let's examine the recursion formula more closely:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

The equation of the line tangent to the graph of $f(x)$ at $x=x_{n}$ is:

$$
y-f\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right) \quad \text { or } \quad y=f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)+f\left(x_{n}\right)
$$

We obtain the x-intercept (equivalent to a root of the tangent line equation) by setting y to zero:

$$
0=f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)+f\left(x_{n}\right)
$$

and solving for x

Newton's Method

Subtracting $f\left(x_{n}\right)$ from both sides we get

$$
f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)=-f\left(x_{n}\right)
$$

Newton's Method

Subtracting $f\left(x_{n}\right)$ from both sides we get

$$
f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)=-f\left(x_{n}\right)
$$

Now divide both sides by $f^{\prime}\left(x_{n}\right)$,

$$
x-x_{n}=-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton's Method

Subtracting $f\left(x_{n}\right)$ from both sides we get

$$
f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)=-f\left(x_{n}\right)
$$

Now divide both sides by $f^{\prime}\left(x_{n}\right)$,

$$
x-x_{n}=-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Finally we add x_{n} to both sides to get the x intercept as:

$$
x=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

We take this to be x_{n+1} and repeat the process.

Example 1

Find $\sqrt[3]{2}$ to six decimal places.

Example 1

Find $\sqrt[3]{2}$ to six decimal places.
The equation that has $\sqrt[3]{2}$ as a root is

$$
x^{3}-2=0
$$

Example 1

Find $\sqrt[3]{2}$ to six decimal places.
The equation that has $\sqrt[3]{2}$ as a root is

$$
x^{3}-2=0
$$

So let

$$
f(x)=x^{3}-2 \quad \text { and } \quad f^{\prime}(x)=3 x^{2}
$$

Example 1

Find $\sqrt[3]{2}$ to six decimal places.
The equation that has $\sqrt[3]{2}$ as a root is

$$
x^{3}-2=0
$$

So let

$$
f(x)=x^{3}-2 \quad \text { and } \quad f^{\prime}(x)=3 x^{2}
$$

In this case the recursion formula is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{3}-2}{3 x_{n}^{2}}
$$

Example 1

We can simplify this a bit to

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-2}{3 x_{n}^{2}}=\frac{2 x_{n}}{3}-\frac{2}{3 x_{n}^{2}}
$$

Example 1

We can simplify this a bit to

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-2}{3 x_{n}^{2}}=\frac{2 x_{n}}{3}-\frac{2}{3 x_{n}^{2}}
$$

We now pick x_{0}, the initial guess

Example 1

We can simplify this a bit to

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-2}{3 x_{n}^{2}}=\frac{2 x_{n}}{3}-\frac{2}{3 x_{n}^{2}}
$$

We now pick x_{0}, the initial guess
Then

$$
x_{1}=\frac{2 x_{0}}{3}-\frac{2}{3 x_{0}^{2}}
$$

Example 1

We can simplify this a bit to

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-2}{3 x_{n}^{2}}=\frac{2 x_{n}}{3}-\frac{2}{3 x_{n}^{2}}
$$

We now pick x_{0}, the initial guess
Then

$$
x_{1}=\frac{2 x_{0}}{3}-\frac{2}{3 x_{0}^{2}}
$$

and

$$
x_{2}=\frac{2 x_{1}}{3}-\frac{2}{3 x_{1}^{2}}
$$

Example 1

Continung,

$$
x_{3}=\frac{2 x_{2}}{3}-\frac{2}{3 x_{2}^{2}}
$$

Example 1

Continung,

$$
\begin{aligned}
& x_{3}=\frac{2 x_{2}}{3}-\frac{2}{3 x_{2}^{2}} \\
& x_{4}=\frac{2 x_{3}}{3}-\frac{2}{3 x_{3}^{2}}
\end{aligned}
$$

Example 1

Continung,

$$
\begin{aligned}
& x_{3}=\frac{2 x_{2}}{3}-\frac{2}{3 x_{2}^{2}} \\
& x_{4}=\frac{2 x_{3}}{3}-\frac{2}{3 x_{3}^{2}}
\end{aligned}
$$

Continung,

$$
x_{5}=\frac{2 x_{4}}{3}-\frac{2}{3 x_{4}^{2}}
$$

Example 1

Continung,

$$
\begin{aligned}
& x_{3}=\frac{2 x_{2}}{3}-\frac{2}{3 x_{2}^{2}} \\
& x_{4}=\frac{2 x_{3}}{3}-\frac{2}{3 x_{3}^{2}}
\end{aligned}
$$

Continung,

$$
x_{5}=\frac{2 x_{4}}{3}-\frac{2}{3 x_{4}^{2}}
$$

We continue until the desired number of correct digits is obtained, which we can tell by how many digits remain the same from the previous iteration.

