Steps in Solving Optimization Problem

- Read the problem carefully and understand it

Steps in Solving Optimization Problem

- Read the problem carefully and understand it
- Draw a diagram

Steps in Solving Optimization Problem

- Read the problem carefully and understand it
- Draw a diagram
- Introduce notation - Assign the quantity to be optimized the symbol Q

Steps in Solving Optimization Problem

- Read the problem carefully and understand it
- Draw a diagram
- Introduce notation - Assign the quantity to be optimized the symbol Q
- Express Q in terms of the other symbols assigned

Steps in Solving Optimization Problem

- Read the problem carefully and understand it
- Draw a diagram
- Introduce notation - Assign the quantity to be optimized the symbol Q
- Express Q in terms of the other symbols assigned
- If Q involves a function of more than one variable, eliminate all but one

Steps in Solving Optimization Problem

- Read the problem carefully and understand it
- Draw a diagram
- Introduce notation - Assign the quantity to be optimized the symbol Q
- Express Q in terms of the other symbols assigned
- If Q involves a function of more than one variable, eliminate all but one
- Find the absolute maximum or minimum of Q

Example 1

Find the point on the line $y=-x+1$ that is closest to the origin.

Example 1

Find the point on the line $y=-x+1$ that is closest to the origin.
Write the distance from $(x, f(x))$ to the origin as

$$
[Q(x)]^{2}=(x-0)^{2}+(f(x)-0)^{2}=x^{2}+(-x+1)^{2}
$$

Example 1

Find the point on the line $y=-x+1$ that is closest to the origin.
Write the distance from $(x, f(x))$ to the origin as

$$
[Q(x)]^{2}=(x-0)^{2}+(f(x)-0)^{2}=x^{2}+(-x+1)^{2}
$$

Simplifying we get

$$
[Q(x)]^{2}=2 x^{2}-2 x+1
$$

Example 1

Find the point on the line $y=-x+1$ that is closest to the origin.
Write the distance from $(x, f(x))$ to the origin as

$$
[Q(x)]^{2}=(x-0)^{2}+(f(x)-0)^{2}=x^{2}+(-x+1)^{2}
$$

Simplifying we get

$$
[Q(x)]^{2}=2 x^{2}-2 x+1
$$

Differentiating with respect to x,

$$
2 Q Q^{\prime}=4 x-2 \text { or } Q^{\prime}=\frac{2 x-1}{Q}
$$

Example 1

Now set the derivative Q^{\prime} to zero:

$$
Q^{\prime}=0=\frac{2 x-1}{Q}
$$

Example 1

Now set the derivative Q^{\prime} to zero:

$$
Q^{\prime}=0=\frac{2 x-1}{Q}
$$

Multiplying both sides by Q gives

$$
0=2 x-1 \quad \text { or } \quad x=\frac{1}{2}
$$

Example 1

Now set the derivative Q^{\prime} to zero:

$$
Q^{\prime}=0=\frac{2 x-1}{Q}
$$

Multiplying both sides by Q gives

$$
0=2 x-1 \quad \text { or } \quad x=\frac{1}{2}
$$

The associated y value is $-1 / 2+1$ so the closest point is

$$
\left(\frac{1}{2}, \frac{1}{2}\right)
$$

Example 2

Suppose we have a set of pairs of x and y values $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ that can be assumed to fit a model of the form

$$
y=b x
$$

that is, a model where y is proportional to x.

Example 2

Suppose we have a set of pairs of x and y values $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ that can be assumed to fit a model of the form

$$
y=b x
$$

that is, a model where y is proportional to x.
With real data, the numbers will almost never result in a system of equations that can be solved for b. One approach is to use least squares: we choose the value of b that makes

$$
Q(b)=\sum_{i=1}^{n}\left(y_{i}-b x_{i}\right)^{2}
$$

as small as possible (note that we consider Q to be a function of b; The x_{i} and y_{i} are constants)

Example 2

Differentiating with respect to b (and using the fact that the derivative of a sum is the sum of the derivatives),

$$
\frac{d Q}{d b}=\sum_{i=1}^{n} 2\left(y_{i}-b x_{i}\right) \cdot\left(-x_{i}\right)
$$

Example 2

The local max or min will occur at a critical value, so set $Q^{\prime}=0$:

$$
0=\sum_{i=1}^{n} 2\left(y_{i}-b x_{i}\right) \cdot\left(-x_{i}\right)=2\left(-\sum_{i=1}^{n} x_{i} y_{i}+b \sum_{i=1}^{n} x_{i}^{2}\right)
$$

Example 2

The local max or min will occur at a critical value, so set $Q^{\prime}=0$:

$$
0=\sum_{i=1}^{n} 2\left(y_{i}-b x_{i}\right) \cdot\left(-x_{i}\right)=2\left(-\sum_{i=1}^{n} x_{i} y_{i}+b \sum_{i=1}^{n} x_{i}^{2}\right)
$$

Solving for b gives:

$$
b_{\min }=\frac{\sum_{i-1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

Example 2

$$
b_{\min }=\frac{\sum_{i-1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

In statistics, this is known as a no intercept regression model and is a commonly used technique for estimating a proportionality constant when the application suggests a model of the form

$$
y=b x
$$

Example 3

Another example from statistics is the following: Given a set of values $y_{1}, y_{2}, \ldots, y_{n}$, find a value m that makes

$$
\sum_{i=1}^{n}\left(y_{i}-m\right)^{2}
$$

as small as possible.

Example 3

Another example from statistics is the following: Given a set of values $y_{1}, y_{2}, \ldots, y_{n}$, find a value m that makes

$$
\sum_{i=1}^{n}\left(y_{i}-m\right)^{2}
$$

as small as possible.
As before, write the objective function as $Q(m)$:

$$
Q(m)=\sum_{i=1}^{n}\left(y_{i}-m\right)^{2}
$$

Example 3

Now differentiate with respect to m and set the result to zero:

$$
0=\sum_{i=1}^{n} 2\left(y_{i}-m\right)(-1)=2 \sum_{i=1}^{n}\left(m-y_{i}\right)
$$

Example 3

Now differentiate with respect to m and set the result to zero:

$$
0=\sum_{i=1}^{n} 2\left(y_{i}-m\right)(-1)=2 \sum_{i=1}^{n}\left(m-y_{i}\right)
$$

then:

$$
0=\sum_{i=1}^{n}\left(m-y_{i}\right)=n m-\sum_{i=1}^{n} y_{i}
$$

SO

$$
m_{\min }=\frac{\sum_{i=1}^{n} y_{i}}{n}=\bar{y} . \quad \text { the mean of } y
$$

