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Steps in Solving Optimization Problems
Read the problem carefully and understand it

Draw a diagram

Introduce notation - Assign the quantity to be optimized
the symbol Q

Express Q in terms of the other symbols assigned

If Q involves a function of more than one variable,
eliminate all but one

Find the absolute maximum or minimum of Q
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Example 1
Find the point on the line y = −x + 1 that is closest to the
origin.
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[Q(x)]2 = (x − 0)2 + (f(x) − 0)2 = x2 + (−x + 1)2
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Example 1
Find the point on the line y = −x + 1 that is closest to the
origin.

Write the distance from (x, f(x)) to the origin as

[Q(x)]2 = (x − 0)2 + (f(x) − 0)2 = x2 + (−x + 1)2

Simplifying we get

[Q(x)]2 = 2x2
− 2x + 1

Differentiating with respect to x,

2QQ′ = 4x − 2 or Q′ =
2x − 1

Q
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Example 1

Now set the derivative Q′ to zero:

Q′ = 0 =
2x − 1

Q
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Now set the derivative Q′ to zero:

Q′ = 0 =
2x − 1

Q

Multiplying both sides by Q gives

0 = 2x − 1 or x =
1

2
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Example 1

Now set the derivative Q′ to zero:

Q′ = 0 =
2x − 1

Q

Multiplying both sides by Q gives

0 = 2x − 1 or x =
1

2

The associated y value is −1/2 + 1 so the closest point is
(

1

2
,
1

2

)
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Example 2
Suppose we have a set of pairs of x and y values
(x1, y1), (x2, y2), . . . that can be assumed to fit a model of the
form

y = bx

that is, a model where y is proportional to x.
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Example 2
Suppose we have a set of pairs of x and y values
(x1, y1), (x2, y2), . . . that can be assumed to fit a model of the
form

y = bx

that is, a model where y is proportional to x.

With real data, the numbers will almost never result in a
system of equations that can be solved for b. One approach
is to use least squares: we choose the value of b that
makes

Q(b) =
n
∑

i=1

(yi − bxi)
2

as small as possible (note that we consider Q to be a
function of b; The xi and yi are constants)
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Example 2
Differentiating with respect to b (and using the fact that the
derivative of a sum is the sum of the derivatives),

dQ

db
=

n
∑

i=1

2(yi − bxi) · (−xi)
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Example 2
The local max or min will occur at a critical value, so set
Q′ = 0:

0 =
n
∑

i=1

2(yi − bxi) · (−xi) = 2

(

−

n
∑

i=1

xiyi + b
n
∑

i=1

x2

i

)
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Example 2
The local max or min will occur at a critical value, so set
Q′ = 0:

0 =
n
∑

i=1

2(yi − bxi) · (−xi) = 2

(

−

n
∑

i=1

xiyi + b
n
∑

i=1

x2

i

)

Solving for b gives:

bmin =

∑

n

i−1
xiyi

∑

n

i=1
x2

i
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Example 2

bmin =

∑

n

i−1
xiyi

∑

n

i=1
x2

i

In statistics, this is known as a no intercept regression
model and is a commonly used technique for estimating a
proportionality constant when the application suggests a
model of the form

y = bx
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Example 3
Another example from statistics is the following: Given a set
of values y1, y2, . . . , yn, find a value m that makes

n
∑

i=1

(yi − m)2

as small as possible.
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Example 3
Another example from statistics is the following: Given a set
of values y1, y2, . . . , yn, find a value m that makes

n
∑

i=1

(yi − m)2

as small as possible.

As before, write the objective function as Q(m):

Q(m) =
n
∑

i=1

(yi − m)2
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Example 3
Now differentiate with respect to m and set the result to
zero:

0 =
n
∑

i=1

2(yi − m)(−1) = 2
n
∑

i=1

(m − yi)
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Example 3
Now differentiate with respect to m and set the result to
zero:

0 =
n
∑

i=1

2(yi − m)(−1) = 2
n
∑

i=1

(m − yi)

then:

0 =
n
∑

i=1

(m − yi) = nm −

n
∑

i=1

yi

so

mmin =

∑

n

i=1
yi

n
= y. the mean of y
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