

Gene Quinn

Indeterminate Forms and l'Hospital's Rule

Theorem(l'Hospital's Rule):

Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ for values of x near $x=a$ (with the possible exception of a itself).

Suppose also that the limits as $x \rightarrow a$ of f and g are both zero or both $\pm \infty$.

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0
$$

or

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the limit on the right side exists, or is $\pm \infty$.

l'Hospital's Rule - Things to Keep in Mind

- The expression you want the limit of must contain two functions.

l'Hospital's Rule - Things to Keep in Mind

- The expression you want the limit of must contain two functions.
- It must be the quotient of those two functions.

l'Hospital's Rule - Things to Keep in Mind

- The expression you want the limit of must contain two functions.
- It must be the quotient of those two functions.
- At the point of interest, the limit must be $0 / 0$ or $\pm \infty / \pm \infty$.

l'Hospital's Rule - Things to Keep in Mind

- The expression you want the limit of must contain two functions.
- It must be the quotient of those two functions.
- At the point of interest, the limit must be $0 / 0$ or $\pm \infty / \pm \infty$.
- Although we have a quotient of functions and we need to take derivatives, do not apply the quotient rule. Differentiate the numerator and denominator separately.

l'Hospital's Rule - Things to Keep in Mind

- The expression you want the limit of must contain two functions.
- It must be the quotient of those two functions.
- At the point of interest, the limit must be $0 / 0$ or $\pm \infty / \pm \infty$.
- Although we have a quotient of functions and we need to take derivatives, do not apply the quotient rule. Differentiate the numerator and denominator separately.
- It's very important to verify that the necessary conditions are met before applying l'Hospital's rule.

Indeterminate Form Example: 0/0

Evaluate the limit

$$
\lim _{x \rightarrow \pi} \frac{\sin x}{x^{2}-\pi^{2}}
$$

Indeterminate Form Example: 0/0

Evaluate the limit

$$
\lim _{x \rightarrow \pi} \frac{\sin x}{x^{2}-\pi^{2}}
$$

This is a quotient of functions,

$$
\frac{f(x)}{g(x)}
$$

Indeterminate Form Example: 0/0

Evaluate the limit

$$
\lim _{x \rightarrow \pi} \frac{\sin x}{x^{2}-\pi^{2}}
$$

This is a quotient of functions,

$$
\frac{f(x)}{g(x)}
$$

L'Hospital's rule applies to quotients of functions, so our first step is to evaluate the limits of the numerator and denominator separately,

$$
\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi} \sin x
$$

and

$$
\lim _{x \rightarrow \pi} g(x)=\lim _{x \rightarrow \pi}\left(x^{2}-\pi^{2}\right)
$$

Indeterminate Form Example: 0/0

Both f and g are continuous at π, so we can evaluate the limits by direct substitution:

$$
\lim _{x \rightarrow \pi} \sin x=\sin \pi=0
$$

and

$$
\lim _{x \rightarrow \pi}\left(x^{2}-\pi^{2}\right)=\pi^{2}-\pi^{2}=0
$$

Indeterminate Form Example: 0/0

Both f and g are continuous at π, so we can evaluate the limits by direct substitution:

$$
\lim _{x \rightarrow \pi} \sin x=\sin \pi=0
$$

and

$$
\lim _{x \rightarrow \pi}\left(x^{2}-\pi^{2}\right)=\pi^{2}-\pi^{2}=0
$$

Since the limits of the denominator and numerator are both zero, we have an indeterminate form of type $0 / 0$, so L'Hospital's rule applies and we can write

$$
\lim _{x \rightarrow \pi} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \pi} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Indeterminate Form Example: 0/0

Now take derivatives of f and g and evaluate their limits:

$$
f^{\prime}(x)=\frac{d}{d x} \sin x=\cos x
$$

$\cos x$ is continuous at $x=\pi$,
so by direct substitution

$$
\begin{gathered}
\lim _{x \rightarrow \pi} f^{\prime}(x)=\lim _{x \rightarrow \pi} \cos x \\
=\cos \pi=-1
\end{gathered}
$$

Indeterminate Form Example: 0/0

$$
g^{\prime}(x)=\frac{d}{d x}\left(x^{2}-\pi^{2}\right)=2 x
$$

$2 x$ is continuous at $x=\pi$,
so by direct substitution

$$
\begin{gathered}
\lim _{x \rightarrow \pi} g^{\prime}(x)=\lim _{x \rightarrow \pi} 2 x \\
=2 \pi
\end{gathered}
$$

Indeterminate Form Example: 0/0

L'Hospital's rule says that

$$
\begin{gathered}
\lim _{x \rightarrow \pi} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \pi} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
\lim _{x \rightarrow \pi} \frac{\cos x}{2 x}=\frac{-1}{2 \pi}
\end{gathered}
$$

Indeterminate Form Example: 0/0

L'Hospital's rule says that

$$
\begin{gathered}
\lim _{x \rightarrow \pi} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \pi} \frac{f^{\prime}(x)}{g^{\prime}(x)} \\
\lim _{x \rightarrow \pi} \frac{\cos x}{2 x}=\frac{-1}{2 \pi}
\end{gathered}
$$

We now conclude that

$$
\lim _{x \rightarrow \pi} \frac{\sin x}{x^{2}-\pi^{2}}=-\frac{1}{2 \pi}
$$

Indeterminate Form Example: 0/0

Example: Find

$$
\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\ln (1+\theta)}
$$

Indeterminate Form Example: 0/0

Example: Find

$$
\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\ln (1+\theta)}
$$

By direct substitution, the limits of the numerator and denominator are both zero:

$$
\begin{gathered}
\lim _{\theta \rightarrow 0} \tan \theta=\tan 0=\frac{\sin 0}{\cos 0}=\frac{0}{1}=0 \\
\lim _{\theta \rightarrow 0} \ln (1+\theta)=\ln (1+0)=0
\end{gathered}
$$

Indeterminate Form Example: 0/0

Example: Find

$$
\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\ln (1+\theta)}
$$

By direct substitution, the limits of the numerator and denominator are both zero:

$$
\begin{gathered}
\lim _{\theta \rightarrow 0} \tan \theta=\tan 0=\frac{\sin 0}{\cos 0}=\frac{0}{1}=0 \\
\lim _{\theta \rightarrow 0} \ln (1+\theta)=\ln (1+0)=0
\end{gathered}
$$

(Answer: 1)

Indeterminate Form Example

Example: Find

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}
$$

Indeterminate Form Example

Example: Find

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}
$$

The numerator

$$
\ln x
$$

and the denominator

$$
x
$$

go to ∞ as $x \rightarrow \infty$.

Indeterminate Form Example

L'Hospital's rule applies, and states that

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}
$$

Indeterminate Form Example

L'Hospital's rule applies, and states that

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}
$$

The numerator

$$
\ln x
$$

and the denominator

$$
x
$$

go to ∞ as $x \rightarrow \infty$.
(Answer: 0)

Indeterminate Form Example

Find

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x \cdot \cos x}
$$

Indeterminate Form Example

Find

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x \cdot \cos x}
$$

Answer: 1

Special Cases

There are a few special cases where the limit is not of the form

$$
\frac{0}{0} \text { or } \frac{ \pm \infty}{ \pm \infty}
$$

but can be converted to one of these by careful algebraic manipulation. You then apply l'Hospital's Rule to the converted expression.

The trick in these situations is recognizing how to convert the expression, which may not be obvious.

Special Cases: 0• ∞

Suppose you want to find the limit of a product of two functions $f g$ as x approaches some value a, and

$$
\lim _{x \rightarrow a} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Special Cases: 0• ∞

Suppose you want to find the limit of a product of two functions $f g$ as x approaches some value a, and

$$
\lim _{x \rightarrow a} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Write the function $f g$ as

$$
f g=\frac{f}{1 / g}
$$

Then the limit has the form $0 / 0$ and you can apply l'Hospital's Rule.

Special Cases: 0• ∞

Suppose you want to find the limit of a product of two functions $f g$ as x approaches some value a, and

$$
\lim _{x \rightarrow a} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Write the function $f g$ as

$$
f g=\frac{f}{1 / g}
$$

Then the limit has the form $0 / 0$ and you can apply l'Hospital's Rule. Alternatively, write the function $f g$ as

$$
f g=\frac{g}{1 / f}
$$

Then the limit has the form $\pm \infty / \pm \infty$ and again you can apply l'Hospital's Rule.

Indeterminate Form Example

Find

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x
$$

Indeterminate Form Example

Find

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x
$$

Answer: 0

Special Cases: $0 \cdot \infty$

Suppose we want to find

$$
\lim _{x \rightarrow \infty} x^{2} e^{-x}
$$

Special Cases: 0• ∞

Suppose we want to find

$$
\lim _{x \rightarrow \infty} x^{2} e^{-x}
$$

The limits of the two factors are:

$$
\lim _{x \rightarrow \infty} x^{2}=\infty \quad \lim _{x \rightarrow \infty} e^{-x}=0
$$

so the limit of the product has the form $0 \cdot \infty$.

Special Cases: 0• ∞

Suppose we want to find

$$
\lim _{x \rightarrow \infty} x^{2} e^{-x}
$$

The limits of the two factors are:

$$
\lim _{x \rightarrow \infty} x^{2}=\infty \quad \lim _{x \rightarrow \infty} e^{-x}=0
$$

so the limit of the product has the form $0 \cdot \infty$.
One option is to write the expression as

$$
x^{2} e^{-x}=\frac{x^{2}}{e^{x}}
$$

The limit of the new expression has the form $\pm \infty / \pm \infty$, so we can apply
l'Hospital's Rule.

Special Cases: 0• ∞

The derivative of the numerator is

$$
\frac{d}{d x} x^{2}=2 x
$$

and

$$
\lim _{x \rightarrow \infty} 2 x=\infty
$$

Special Cases: 0• ∞

The derivative of the numerator is

$$
\frac{d}{d x} x^{2}=2 x
$$

and

$$
\lim _{x \rightarrow \infty} 2 x=\infty
$$

The derivative of the denominator is

$$
\frac{d}{d x} e^{x}=e^{x}
$$

and

$$
\lim _{x \rightarrow \infty} e^{x}=\infty
$$

so the limit of the quotient has the form ∞ / ∞.

Special Cases: 0• ∞

l'Hospital's Rule says that

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\frac{\lim _{x \rightarrow \infty} \frac{d}{d x} x^{2}}{\lim _{x \rightarrow \infty} \frac{d}{d x} e^{x}}=\frac{\lim _{x \rightarrow \infty} 2 x}{\lim _{x \rightarrow \infty} e^{x}}=\frac{\infty}{\infty}
$$

which doesn't seem to help, because we still have ∞ / ∞.

Special Cases: 0• ∞

l'Hospital's Rule says that

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\frac{\lim _{x \rightarrow \infty} \frac{d}{d x} x^{2}}{\lim _{x \rightarrow \infty} \frac{d}{d x} e^{x}}=\frac{\lim _{x \rightarrow \infty} 2 x}{\lim _{x \rightarrow \infty} e^{x}}=\frac{\infty}{\infty}
$$

which doesn't seem to help, because we still have ∞ / ∞.
However,

$$
\frac{2 x}{e^{x}}
$$

satisfies all of the conditions to apply l'Hopital's Rule a second time.

Special Cases: 0• ∞

l'Hospital's Rule says that

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\frac{\lim _{x \rightarrow \infty} \frac{d}{d x} x^{2}}{\lim _{x \rightarrow \infty} \frac{d}{d x} e^{x}}=\frac{\lim _{x \rightarrow \infty} 2 x}{\lim _{x \rightarrow \infty} e^{x}}=\frac{\infty}{\infty}
$$

which doesn't seem to help, because we still have ∞ / ∞.
However,

$$
\frac{2 x}{e^{x}}
$$

satisfies all of the conditions to apply l'Hopital's Rule a second time.

In fact, it's fairly common to have to apply the rule several times before the resulting quotient has a limit other than $0 / 0$ or $\pm \infty / \pm \infty$.

Special Cases: 0• ∞

On this iteration, we are trying to find the limit of

$$
\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}
$$

which as we have seen has the form ∞ / ∞.

Special Cases: 0• ∞

On this iteration, we are trying to find the limit of

$$
\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}
$$

which as we have seen has the form ∞ / ∞.
A second application of l'Hospital's Rule produces

$$
\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\frac{\lim _{x \rightarrow \infty} \frac{d}{d x} 2 x}{\lim _{x \rightarrow \infty} \frac{d}{d x} e^{x}}=\frac{\lim _{x \rightarrow \infty} 2}{\lim _{x \rightarrow \infty} e^{x}}=0
$$

because the numerator 2 is constant, while the denominator e^{x} goes to infinity.

Special Cases: 0• ∞

On this iteration, we are trying to find the limit of

$$
\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}
$$

which as we have seen has the form ∞ / ∞.
A second application of l'Hospital's Rule produces

$$
\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\frac{\lim _{x \rightarrow \infty} \frac{d}{d x} 2 x}{\lim _{x \rightarrow \infty} \frac{d}{d x} e^{x}}=\frac{\lim _{x \rightarrow \infty} 2}{\lim _{x \rightarrow \infty} e^{x}}=0
$$

because the numerator 2 is constant, while the denominator e^{x} goes to infinity.

So with two applications of l'Hospital's Rule we are able to conclude that

$$
\lim _{x \rightarrow \infty} x^{2} e^{-x}=0
$$

Special Cases: $\infty-\infty$

Another special case that can sometime be handled is a limit of the form

$$
\infty-\infty
$$

Special Cases: $\infty-\infty$

Another special case that can sometime be handled is a limit of the form

$$
\infty-\infty
$$

Once again, we must be able to convert the difference to a quotient whose limit is $0 / 0$ or ∞ / ∞.

Suppose we have

$$
\lim _{x \rightarrow 1^{-}}\left(\frac{3}{x-1}-\frac{3 x}{x-1}\right)
$$

which has the form $\infty-\infty$.

Special Cases: $\infty-\infty$

Another special case that can sometime be handled is a limit of the form

$$
\infty-\infty
$$

Once again, we must be able to convert the difference to a quotient whose limit is $0 / 0$ or ∞ / ∞.

Suppose we have

$$
\lim _{x \rightarrow 1^{-}}\left(\frac{3}{x-1}-\frac{3 x}{x-1}\right)
$$

which has the form $\infty-\infty$.
Subtract the fractions to obtain

$$
\lim _{x \rightarrow 1^{-}} \frac{3-3 x}{x-1}
$$

which is a $0 / 0$ form.

Special Cases: 0• ∞

l'Hospital's Rule says that

$$
\lim _{x \rightarrow 1^{-}} \frac{3-3 x}{x-1}=\frac{\lim _{x \rightarrow 1^{-}} \frac{d}{d x} 3-3 x}{\lim _{x \rightarrow 1^{-}} \frac{d}{d x} x-1}=\frac{\lim _{x \rightarrow 1^{-}}-3}{\lim _{x \rightarrow 1^{-}} 1}=-3
$$

Special Cases: 0• ∞

l'Hospital's Rule says that

$$
\lim _{x \rightarrow 1^{-}} \frac{3-3 x}{x-1}=\frac{\lim _{x \rightarrow 1^{-}} \frac{d}{d x} 3-3 x}{\lim _{x \rightarrow 1^{-}} \frac{d}{d x} x-1}=\frac{\lim _{x \rightarrow 1^{-}}-3}{\lim _{x \rightarrow 1^{-}} 1}=-3
$$

Of course we could have used cancellation

$$
\frac{3-3 x}{x-1}=-\frac{x-1}{x-1}=-3
$$

to reduce the function to a constant when $x \neq 1$ and it's clear that the limit is -3 .

Special Cases: Indeterminate Powers

Limits of the form

$$
\lim _{x \rightarrow a}[f(x)]^{g(x)}
$$

produce indeterminate forms like:

$$
0^{0} \quad \infty^{0} \quad \text { and } \quad 1^{\infty}
$$

Special Cases: Indeterminate Powers

Limits of the form

$$
\lim _{x \rightarrow a}[f(x)]^{g(x)}
$$

produce indeterminate forms like:

$$
0^{0} \quad \infty^{0} \quad \text { and } \quad 1^{\infty}
$$

Often either taking logarithms, or converting to a product of exponentials will produce a form that allows us to apply l'Hospital's Rule. See the text for examples (p. 304).

Special Cases: Indeterminate Powers

Example: Find

$$
\lim _{x \rightarrow 0^{+}}(\cos x)^{1 / x}
$$

Special Cases: Indeterminate Powers

Example: Find

$$
\lim _{x \rightarrow 0^{+}}(\cos x)^{1 / x}
$$

Solution: This has the form 1^{∞}. We take the logs of both sides of

$$
y=(\cos x)^{1 / x}
$$

to obtain the $0 / 0$ form

$$
\ln y=\frac{\ln (\cos x)}{x}
$$

Applying L'Hospital's rule, we get

$$
\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{\ln (\cos x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{\cos x} \cdot(-\sin x)}{1}=0
$$

Special Cases: Indeterminate Powers

Having established that

$$
\lim _{x \rightarrow 0^{+}} \ln (\cos x)^{1 / x}=0
$$

we may write

$$
\lim _{x \rightarrow 0^{+}}(\cos x)^{1 / x}=e^{0}=1
$$

