Stewart Section 4.5

Gene Quinn

Indeterminate Forms and l'Hospital's Rule

Sometimes it is necessary to determine the limit of a function at a point where the function is not defined, for example

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}
$$

Indeterminate Forms and l'Hospital's Rule

Sometimes it is necessary to determine the limit of a function at a point where the function is not defined, for example

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}
$$

We've seen that limits of rational functions like this one can be handled by factoring because the numerator and denominator have a common factor ($x-2$ in this case):

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{4}
$$

Indeterminate Forms and l'Hospital's Rule

Although we cannot evaluate

$$
\frac{x-2}{x^{2}-4}
$$

at $x=2$, we can evaluate the numerator and denominator separately:

$$
\begin{array}{ll}
(x-2)=0 & \text { when } \\
\left(x^{2}-4\right)=0 & \text { when }
\end{array} \quad x=2
$$

Indeterminate Forms and l'Hospital's Rule

Although we cannot evaluate

$$
\frac{x-2}{x^{2}-4}
$$

at $x=2$, we can evaluate the numerator and denominator separately:

$$
\begin{aligned}
& (x-2)=0 \quad \text { when } \quad x=2 \\
& \left(x^{2}-4\right)=0 \quad \text { when } \quad x=2
\end{aligned}
$$

We cannot evaluate the fraction, because when $x=2$, it has the form

which is called an indeterminate form of type $\frac{0}{0}$.

Indeterminate Forms and l'Hospital's Rule

Suppose we label the functions in the numerator and denominator as f and g, respectively:

$$
\begin{aligned}
& f(x)=x-2 \\
& g(x)=x^{2}-4
\end{aligned}
$$

Indeterminate Forms and l'Hospital's Rule

Suppose we label the functions in the numerator and denominator as f and g, respectively:

$$
\begin{aligned}
& f(x)=x-2 \\
& g(x)=x^{2}-4
\end{aligned}
$$

Then the derivatives of f and g are:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(x-2)=1 \\
g^{\prime}(x) & =\frac{d}{d x}\left(x^{2}-4\right)=2 x
\end{aligned}
$$

Indeterminate Forms and l'Hospital's Rule

Suppose we label the functions in the numerator and denominator as f and g, respectively:

$$
\begin{aligned}
& f(x)=x-2 \\
& g(x)=x^{2}-4
\end{aligned}
$$

Then the derivatives of f and g are:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(x-2)=1 \\
g^{\prime}(x) & =\frac{d}{d x}\left(x^{2}-4\right)=2 x
\end{aligned}
$$

Notice that $f^{\prime}(2)=1$ and $g^{\prime}(2)=2 \cdot 2=4$. Since $g^{\prime}(2) \neq 0$, the rational function

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

is perfectly well-defined at $x=2$.

Indeterminate Forms and l'Hospital's Rule

Now consider

$$
\lim _{x \rightarrow 2} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Indeterminate Forms and l'Hospital's Rule

Now consider

$$
\lim _{x \rightarrow 2} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

We can find the limits of the numerator and denominator as $x \rightarrow 2$:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f^{\prime}(x)=\lim _{x \rightarrow 2} 1=1 \\
& \lim _{x \rightarrow 2} g^{\prime}(x)=\lim _{x \rightarrow 2} 2 x=4
\end{aligned}
$$

Indeterminate Forms and l'Hospital's Rule

Now consider

$$
\lim _{x \rightarrow 2} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

We can find the limits of the numerator and denominator as $x \rightarrow 2$:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f^{\prime}(x)=\lim _{x \rightarrow 2} 1=1 \\
& \lim _{x \rightarrow 2} g^{\prime}(x)=\lim _{x \rightarrow 2} 2 x=4
\end{aligned}
$$

Since $g^{\prime}(2) \neq 0$ we can use direct substitution to obtain

$$
\lim _{x \rightarrow 2} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{\lim _{x \rightarrow 2} 1}{\lim _{x \rightarrow 2} 2 x}=\frac{1}{4}
$$

Indeterminate Forms and l'Hospital's Rule

Notice that from the previous result

$$
\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=\frac{1}{4}
$$

so ast it turns out

$$
\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 2} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{1}{4}
$$

This is not a coincidence, but an example of a theorem called l'Hospital's Rule.

Indeterminate Forms and l'Hospital's Rule

Theorem(l'Hospital's Rule):

Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ for values of x near $x=a$ (with the possible exception of a itself).

Suppose also that the limits as $x \rightarrow a$ of f and g are both zero or both $\pm \infty$.

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0
$$

or

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the limit on the right side exists, or is $\pm \infty$.

