The First Derivative Test

If a continuous function has a critical value at $x=c$, the first derivative test tells us whether f has a local maximum, a local minimum, or neither at $x=c$.

The First Derivative Test

If a continuous function has a critical value at $x=c$, the first derivative test tells us whether f has a local maximum, a local minimum, or neither at $x=c$.

Note that the test does not make use of $f^{\prime}(c)$ in any way

The First Derivative Test

If a continuous function has a critical value at $x=c$, the first derivative test tells us whether f has a local maximum, a local minimum, or neither at $x=c$.

Note that the test does not make use of $f^{\prime}(c)$ in any way
So it can apply to either kind of critical number:

- $f^{\prime}(c)=0$
- $f^{\prime}(c)$ does not exist

Example 1

If

$$
f(x)=|x|
$$

then f has a critical value at $x=0\left(f^{\prime}(0)\right.$ does not exist)

Example 1

If

$$
f(x)=|x|
$$

then f has a critical value at $x=0\left(f^{\prime}(0)\right.$ does not exist)
To the left of zero, $f^{\prime}(x)=-1$

Example 1

If

$$
f(x)=|x|
$$

then f has a critical value at $x=0\left(f^{\prime}(0)\right.$ does not exist)
To the left of zero, $f^{\prime}(x)=-1$
To the right of zero, $f^{\prime}(x)=+1$

Example 1

If

$$
f(x)=|x|
$$

then f has a critical value at $x=0\left(f^{\prime}(0)\right.$ does not exist)
To the left of zero, $f^{\prime}(x)=-1$
To the right of zero, $f^{\prime}(x)=+1$
The first derivative changes from negative to positive.

Example 1

If

$$
f(x)=|x|
$$

then f has a critical value at $x=0\left(f^{\prime}(0)\right.$ does not exist)
To the left of zero, $f^{\prime}(x)=-1$
To the right of zero, $f^{\prime}(x)=+1$
The first derivative changes from negative to positive.
The first derivative test says $f(x)=|x|$ has a local minimum at 0

Example 2

If

$$
f(x)=-x^{2}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$

Example 2

If

$$
f(x)=-x^{2}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$
To the left of zero, $f^{\prime}(x)=-2 x$ is positive

Example 2

If

$$
f(x)=-x^{2}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$
To the left of zero, $f^{\prime}(x)=-2 x$ is positive
To the right of zero, $f^{\prime}(x)=-2 x$ is negative

Example 2

If

$$
f(x)=-x^{2}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$
To the left of zero, $f^{\prime}(x)=-2 x$ is positive
To the right of zero, $f^{\prime}(x)=-2 x$ is negative
The derivative changes from positive to negative

Example 2

If

$$
f(x)=-x^{2}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$
To the left of zero, $f^{\prime}(x)=-2 x$ is positive
To the right of zero, $f^{\prime}(x)=-2 x$ is negative
The derivative changes from positive to negative
The first derivative test says $f(x)=-x^{2}$ has a local maximum at 0

Example 3

If

$$
f(x)=x^{3}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$

Example 3

If

$$
f(x)=x^{3}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$
To the left of zero, $f^{\prime}(x)=3 x^{2}$ is positive

Example 3

If

$$
f(x)=x^{3}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$
To the left of zero, $f^{\prime}(x)=3 x^{2}$ is positive
To the right of zero, $f^{\prime}(x)=3 x^{2}$ is also positive

Example 3

If

$$
f(x)=x^{3}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$
To the left of zero, $f^{\prime}(x)=3 x^{2}$ is positive
To the right of zero, $f^{\prime}(x)=3 x^{2}$ is also positive
The first derivative does not change sign at 0

Example 3

If

$$
f(x)=x^{3}
$$

then f has a critical value at $x=0\left(f^{\prime}(0)=0\right)$
To the left of zero, $f^{\prime}(x)=3 x^{2}$ is positive
To the right of zero, $f^{\prime}(x)=3 x^{2}$ is also positive
The first derivative does not change sign at 0
The first derivative test says $f(x)=x^{3}$ has neither a local minimum nor a local maximum at 0

Question 1

Apply the first derivative to the critical values of
$f(x)=x^{2}-4 x+2$

1. f has a local minimum at $x=2$
2. f has a local maximum a $x=2$
3. f has neither a local maximum nor a local minimum at $x=$
4. The test does not apply

Question 1

Apply the first derivative to the critical values of
$f(x)=x^{2}-4 x+2$

1. f has a local minimum at $x=2$
2. f has a local maximum a $x=2$
3. f has neither a local maximum nor a local minimum at $x=$
4. The test does not apply
5. $f^{\prime}(2)=0 . f$ has a local minimum at $x=2$

Increasing/Decreasing Functions

If the derivative of a function is positive or negative on an interval I,

- f is increasing on I if f^{\prime} is positive
- f is decreasing on I if f^{\prime} is negative

Increasing/Decreasing Functions

If the derivative of a function is positive or negative on an interval I,

- f is increasing on I if f^{\prime} is positive
- f is decreasing on I if f^{\prime} is negative
f^{\prime} must have the same sign everywhere on I

Concave up/down

If the second derivative of a function is positive or negative on an interval I,

- f is concave up on I if $f^{\prime \prime}$ is positive
- f is concave down on I if $f^{\prime \prime}$ is negative

Concave up/down

If the second derivative of a function is positive or negative on an interval I,

- f is concave up on I if $f^{\prime \prime}$ is positive
- f is concave down on I if $f^{\prime \prime}$ is negative
$f^{\prime \prime}$ must have the same sign everywhere on I

Concave up/down

If the second derivative of a function is positive or negative on an interval I,

- f is concave up on I if $f^{\prime \prime}$ is positive
- f is concave down on I if $f^{\prime \prime}$ is negative
$f^{\prime \prime}$ must have the same sign everywhere on I
Concave up (down) means all tangent lines are below (above) the graph of f

Question 2

Find the intervals where

$$
f(x)=x^{3}-3
$$

is concave up and down

1. up: $(-\infty, 0)$ down: $(0, \infty)$ 4. up: $(0, \infty)$ down: $(-\infty, 0)$
2. up: $(-\infty, \infty)$
3. down: $(-\infty, \infty)$
4. up: $(0, \infty)$ down: nowhere
5. None of the above

Question 2

Find the intervals where

$$
f(x)=x^{3}-3
$$

is concave up and down

1. up: $(-\infty, 0)$ down: $(0, \infty)$ 4. up: $(0, \infty)$ down: $(-\infty, 0)$
2. up: $(-\infty, \infty)$
3. down: $(-\infty, \infty)$
4. up: $(0, \infty)$ down: nowhere
5. None of the above
6.

Question 3

Find the intervals where

$$
f(x)=x^{2}-2 x+3
$$

is increasing and decreasing

1. inc: $(-\infty, 0)$ dec: $(0, \infty)$ 4. inc: $(-1, \infty)$ dec: $(-\infty,-1)$
2. inc: $(1, \infty)$ dec: $(-\infty, 1)$ 5. inc: $(0, \infty)$ dec: nowhere
3. inc: $(-\infty, \infty)$
4. None of the above

Question 3

Find the intervals where

$$
f(x)=x^{2}-2 x+3
$$

is increasing and decreasing

1. inc: $(-\infty, 0)$ dec: $(0, \infty)$ 4. inc: $(-1, \infty)$ dec: $(-\infty,-1)$
2. inc: $(1, \infty)$ dec: $(-\infty, 1)$ 5. inc: $(0, \infty)$ dec: nowhere
3. inc: $(-\infty, \infty)$
4. None of the above
5.
