Stewart Section 4.3

Gene Quinn

The Increasing/Decreasing Test

If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.

The Increasing/Decreasing Test

If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.

If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.

The First Derivative Test

Suppose that c is a critical number of a continuous function f.

The First Derivative Test

Suppose that c is a critical number of a continuous function f.
a) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.

The First Derivative Test

Suppose that c is a critical number of a continuous function f.
a) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
b) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.

The First Derivative Test

Suppose that c is a critical number of a continuous function f.
a) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
b) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
c) If f^{\prime} does not change sign at c, then f does not have a local maximum or mimimum at c.

Definition of Concavity

A function (or its graph) is called concave upward on an interval I if f^{\prime} is an increasing function on I.

Definition of Concavity

A function (or its graph) is called concave upward on an interval I if f^{\prime} is an increasing function on I.

A function (or its graph) is called concave downward on an interval I if f^{\prime} is an decreasing function on I .

Concavity Test

If

$$
f^{\prime \prime}(x)>0
$$

for every x in an interval I, then the graph of f is concave upward on I

Concavity Test

If

$$
f^{\prime \prime}(x)>0
$$

for every x in an interval I, then the graph of f is concave upward on I

If

$$
f^{\prime \prime}(x)<0
$$

for every x in an interval I, then the graph of f is concave downward on I

The Second Derivative Test

Suppose $f^{\prime \prime}$ is continuous near c.

If

$$
f^{\prime}(c)=0 \quad \text { and } \quad f^{\prime \prime}(c)>0
$$

then f has a local minimum at c.

The Second Derivative Test

Suppose $f^{\prime \prime}$ is continuous near c.

If

$$
f^{\prime}(c)=0 \quad \text { and } \quad f^{\prime \prime}(c)>0
$$

then f has a local minimum at c.
If

$$
f^{\prime}(c)=0 \quad \text { and } \quad f^{\prime \prime}(c)<0
$$

then f has a local maximum at c.

