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The Increasing/Decreasing Test

If f/(x) > 0 on an interval, then f is increasing on that
interval.




The Increasing/Decreasing Test

If f/(x) > 0 on an interval, then f is increasing on that
interval.

If f'(x) < 0 on an interval, then f is decreasing on that
interval.
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The First Derivative Test

Suppose that ¢ is a critical number of a continuous function

f.
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The First Derivative Test

Suppose that ¢ is a critical number of a continuous function

f.

a) If f/ changes from positive to negative at ¢, then f has a
local maximum at c.
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The First Derivative Test

Suppose that ¢ is a critical number of a continuous function

f.

a) If f/ changes from positive to negative at ¢, then f has a
local maximum at c.

b) If /' changes from negative to positive at ¢, then f has a
local minimum at c.

Stewart Section 4.3 — p. 3/l



The First Derivative Test

Suppose that ¢ is a critical number of a continuous function

f.

a) If f' changes from positive to negative at ¢, then f has a
ocal maximum at c.

0) If f' changes from negative to positive at ¢, then f has a
ocal minimum at c.

c) If /" does not change sign at ¢, then f does not have a
local maximum or mimimum at c.
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Definition of Concavity

A function (or its graph) is called concave upward on an
interval I if f/’ is an increasing function on I.
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Definition of Concavity

A function (or its graph) is called concave upward on an
interval I if f/’ is an increasing function on I.

A function (or its graph) is called concave downward on an
interval 7 if /’ is an decreasing function on I.
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Concavity Test

f
f'(z) >0

for every z In an interval I, then the graph of f is concave
upward on [
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Concavity Test

f
f'(z) >0

for every z In an interval I, then the graph of f is concave
upward on [

I
f'(z) <0

for every z In an interval I, then the graph of f is concave
downward on [
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The Second Derivative Test

Suppose f” is continuous near c.

If
f'(c)=0 and f"(c)>0

then f has a local minimum at c.




The Second Derivative Test

Suppose f” is continuous near c.

If
f'(c)=0 and f"(c)>0

then f has a local minimum at c.

If
f'(c)=0 and [f"(c)<0

then f has a local maximum at c.
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