
Mean Value Theorem
The mean value theorem states that, if a function f is
continuous on a closed interval [a, b], there has to be a point
c between a and b (but not equal to either) where the
tangent line is parallel to the secant line connecting (a, f(a))
and (b, f(b)).
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Mean Value Theorem
The mean value theorem states that, if a function f is
continuous on a closed interval [a, b], there has to be a point
c between a and b (but not equal to either) where the
tangent line is parallel to the secant line connecting (a, f(a))
and (b, f(b)).

If you picture the tangent line rolling along the graph of the
curve this is intuitive

You absolutely must have a function that is continuous on
an interval that includes the endpoints, or the theorem does
not apply.
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Rolle’s Theorem

Rolle’s theorem is a special case of the Mean Value
Theorem that applies when one additional condition is
satisfied:

f(a) = f(b)
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Rolle’s Theorem

Rolle’s theorem is a special case of the Mean Value
Theorem that applies when one additional condition is
satisfied:

f(a) = f(b)

The secant line from (a, f(a)) to (b, f(b)) has slope zero in
this case, so the conclusion is that there is a c between a
and b with f ′(c) = 0.
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Question 1
A function is continuous on [1, 2] and has f(1) = 3 and
f(2) = 4.

According to the mean value theorem,

1. f ′(c) = 1 for some c in (1, 2)

2. f ′(c) = 0 for some c in (1, 2)

3. f ′(c) = 1 for some c in [1, 2]

4. f ′(c) = 1 for some c in (3, 4)

5. f ′(c) = 1 for some c in [3, 4]

6. The theorem does not apply
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Question 1
A function is continuous on [1, 2] and has f(1) = 3 and
f(2) = 4.

According to the mean value theorem,

1. f ′(c) = 1 for some c in (1, 2)

2. f ′(c) = 0 for some c in (1, 2)

3. f ′(c) = 1 for some c in [1, 2]

4. f ′(c) = 1 for some c in (3, 4)

5. f ′(c) = 1 for some c in [3, 4]

6. The theorem does not apply

1. f ′(c) = 1 = (f(2) − f(1))/(2 − 1) for some c in (1, 2)
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Question 2
A function is continuous on (0, 2) and has f(0) = f(2) = 1.

According to Rolle’s theorem,

1. f ′(c) = 0 for some c in (1, 2)

2. f ′(c) = 0 for some c in (0, 2)

3. f ′(c) = 0 for some c in [0, 2]

4. f ′(c) = 0 for some c in (0, 1)

5. f ′(c) = 0 for some c in [1, 2]

6. The theorem does not apply
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Question 2
A function is continuous on (0, 2) and has f(0) = f(2) = 1.

According to Rolle’s theorem,

1. f ′(c) = 0 for some c in (1, 2)

2. f ′(c) = 0 for some c in (0, 2)

3. f ′(c) = 0 for some c in [0, 2]

4. f ′(c) = 0 for some c in (0, 1)

5. f ′(c) = 0 for some c in [1, 2]

6. The theorem does not apply

6. The theorem does not apply because (0, 2) is not a
closed interval
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A Theorem

Theorem If f ′(x) = 0 everywhere in an interval (a, b), then f
is constant on (a, b).
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A Theorem

Theorem If f ′(x) = 0 everywhere in an interval (a, b), then f
is constant on (a, b).

We know that if a function is constant f(x) = c, it has
derivative zero.

This theorem establishes that the converse of that
statement is also true:

If a function has derivative zero everywhere on an interval,
then f(x) = c on the interval.
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A Corollary

Corollary If f ′(x) = g′(x) everywhere on an interval (a, b),
then

f(x) − g(x) − c on (a, b)
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A Corollary

Corollary If f ′(x) = g′(x) everywhere on an interval (a, b),
then

f(x) − g(x) − c on (a, b)

It is important that f ′ and g′ be defined everywhere on (a, b).
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Example

Let f(x) = x2 and g(x) = x2 + 3 on (−1, 1).
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Example

Let f(x) = x2 and g(x) = x2 + 3 on (−1, 1).

Then f ′ and g′ exist on (−1, 1) and are both equal to 2x
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Example

Let f(x) = x2 and g(x) = x2 + 3 on (−1, 1).

Then f ′ and g′ exist on (−1, 1) and are both equal to 2x

The corollary says that f and g must differ by a constant,
which is true.
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