Mean Value Theorem

The mean value theorem states that, if a function f is continuous on a closed interval $[a, b]$, there has to be a point c between a and b (but not equal to either) where the tangent line is parallel to the secant line connecting ($a, f(a)$) and $(b, f(b))$.

Mean Value Theorem

The mean value theorem states that, if a function f is continuous on a closed interval $[a, b]$, there has to be a point c between a and b (but not equal to either) where the tangent line is parallel to the secant line connecting ($a, f(a)$) and $(b, f(b))$.

If you picture the tangent line rolling along the graph of the curve this is intuitive

Mean Value Theorem

The mean value theorem states that, if a function f is continuous on a closed interval $[a, b]$, there has to be a point c between a and b (but not equal to either) where the tangent line is parallel to the secant line connecting ($a, f(a)$) and $(b, f(b))$.

If you picture the tangent line rolling along the graph of the curve this is intuitive

You absolutely must have a function that is continuous on an interval that includes the endpoints, or the theorem does not apply.

Rolle's Theorem

Rolle's theorem is a special case of the Mean Value Theorem that applies when one additional condition is satisfied:

$$
f(a)=f(b)
$$

Rolle's Theorem

Rolle's theorem is a special case of the Mean Value Theorem that applies when one additional condition is satisfied:

$$
f(a)=f(b)
$$

The secant line from $(a, f(a))$ to $(b, f(b))$ has slope zero in this case, so the conclusion is that there is a c between a and b with $f^{\prime}(c)=0$.

Question 1

A function is continuous on $[1,2]$ and has $f(1)=3$ and $f(2)=4$.
According to the mean value theorem,

1. $f^{\prime}(c)=1$ for some c in $(1,2)$
2. $f^{\prime}(c)=0$ for some c in $(1,2)$
3. $f^{\prime}(c)=1$ for some c in $[1,2]$
4. $f^{\prime}(c)=1$ for some c in $(3,4)$
5. $f^{\prime}(c)=1$ for some c in $[3,4]$
6. The theorem does not apply

Question 1

A function is continuous on $[1,2]$ and has $f(1)=3$ and $f(2)=4$.
According to the mean value theorem,

1. $f^{\prime}(c)=1$ for some c in $(1,2)$
2. $f^{\prime}(c)=0$ for some c in $(1,2)$
3. $f^{\prime}(c)=1$ for some c in $[1,2]$
4. $f^{\prime}(c)=1$ for some c in $(3,4)$
5. $f^{\prime}(c)=1$ for some c in $[3,4]$
6. The theorem does not apply
7. $f^{\prime}(c)=1=(f(2)-f(1)) /(2-1)$ for some c in $(1,2)$

Question 2

A function is continuous on $(0,2)$ and has $f(0)=f(2)=1$.
According to Rolle's theorem,

1. $f^{\prime}(c)=0$ for some c in $(1,2)$
2. $f^{\prime}(c)=0$ for some c in $(0,2)$
3. $f^{\prime}(c)=0$ for some c in $[0,2]$
4. $f^{\prime}(c)=0$ for some c in $(0,1)$
5. $f^{\prime}(c)=0$ for some c in $[1,2]$
6. The theorem does not apply

Question 2

A function is continuous on $(0,2)$ and has $f(0)=f(2)=1$.
According to Rolle's theorem,

1. $f^{\prime}(c)=0$ for some c in $(1,2)$
2. $f^{\prime}(c)=0$ for some c in $(0,2)$
3. $f^{\prime}(c)=0$ for some c in $[0,2]$
4. $f^{\prime}(c)=0$ for some c in $(0,1)$
5. $f^{\prime}(c)=0$ for some c in $[1,2]$
6. The theorem does not apply
7. The theorem does not apply because $(0,2)$ is not a closed interval

A Theorem

Theorem If $f^{\prime}(x)=0$ everywhere in an interval (a, b), then f is constant on (a, b).

A Theorem

Theorem If $f^{\prime}(x)=0$ everywhere in an interval (a, b), then f is constant on (a, b).

We know that if a function is constant $f(x)=c$, it has derivative zero.

A Theorem

Theorem If $f^{\prime}(x)=0$ everywhere in an interval (a, b), then f is constant on (a, b).

We know that if a function is constant $f(x)=c$, it has derivative zero.

This theorem establishes that the converse of that statement is also true:

If a function has derivative zero everywhere on an interval, then $f(x)=c$ on the interval.

A Corollary

Corollary If $f^{\prime}(x)=g^{\prime}(x)$ everywhere on an interval (a, b), then

$$
f(x)-g(x)-c \quad \text { on } \quad(a, b)
$$

A Corollary

Corollary If $f^{\prime}(x)=g^{\prime}(x)$ everywhere on an interval (a, b), then

$$
f(x)-g(x)-c \quad \text { on } \quad(a, b)
$$

It is important that f^{\prime} and g^{\prime} be defined everywhere on (a, b).

Example

Let $f(x)=x^{2}$ and $g(x)=x^{2}+3$ on $(-1,1)$.

Example

Let $f(x)=x^{2}$ and $g(x)=x^{2}+3$ on $(-1,1)$.
Then f^{\prime} and g^{\prime} exist on $(-1,1)$ and are both equal to $2 x$

Example

Let $f(x)=x^{2}$ and $g(x)=x^{2}+3$ on $(-1,1)$.
Then f^{\prime} and g^{\prime} exist on $(-1,1)$ and are both equal to $2 x$
The corollary says that f and g must differ by a constant, which is true.

