Definition: Local Minimum

A function f has a **local minimum** (or **relative minimum**) at x = c if

 $f(c) \leq f(x)$ when x is near c

Definition: Local Minimum

A function f has a **local minimum** (or **relative minimum**) at x = c if

 $f(c) \leq f(x)$ when x is near c

This means that for some open interval (a, b) with a < c < b,

 $f(c) \le f(x)$ for all $x \in (a, b)$

Definition: Local Minimum

A function f has a **local minimum** (or **relative minimum**) at x = c if

 $f(c) \leq f(x)$ when x is near c

This means that for some open interval (a, b) with a < c < b,

 $f(c) \le f(x)$ for all $x \in (a, b)$

The interval (a, b) may have to be chosen to be very small.

Example:

The function

$$f(x) = \cos x$$

has a **local minimum** at

 $x = \pi$

so to apply the definition, choose $c = \pi$

Example:

The function

$$f(x) = \cos x$$

has a **local minimum** at

 $x = \pi$

so to apply the definition, choose $c=\pi$

If we choose an interval containing π , say $(\pi/2, 3\pi/2)$,

$$f(c) = \cos(\pi) = -1 \le \cos(x)$$
 for all $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

Definition: Local Maximum

A function f has a **local maximum** (or **relative maximum**) at x = c if

 $f(c) \ge f(x)$ when x is near c

Definition: Local Maximum

A function f has a **local maximum** (or **relative maximum**) at x = c if

 $f(c) \ge f(x)$ when x is near c

This means that for some open interval (a, b) with a < c < b,

 $f(c) \ge f(x)$ for all $x \in (a, b)$

Definition: Local Maximum

A function f has a **local maximum** (or **relative maximum**) at x = c if

 $f(c) \ge f(x)$ when x is near c

This means that for some open interval (a, b) with a < c < b,

 $f(c) \ge f(x)$ for all $x \in (a, b)$

Again, the interval (a, b) may have to be chosen to be very small.

Example:

The function

$$f(x) = \sin x$$

has a local maximum at

$$x = \frac{\pi}{2}$$

so to apply the definition, choose $c = \pi/2$

Example:

The function

$$f(x) = \sin x$$

has a local maximum at

$$x = \frac{\pi}{2}$$

so to apply the definition, choose $c = \pi/2$

For every value of x in $(0, \pi)$,

 $f(c) = \sin(\pi/2) = 1 \ge \sin(x)$ for all $x \in (0, \pi)$

Definition: Absolute Minimum

A function f has an **absolute minimum** (or **global minimum**) at x = c if

 $f(c) \leq f(x)$ for every x in the domain of f

Definition: Absolute Minimum

A function f has an **absolute minimum** (or **global minimum**) at x = c if

 $f(c) \leq f(x)$ for every x in the domain of f

Definition: Absolute Maximum

A function f has an **absolute maximum** (or **global maximum**) at x = c if

 $f(c) \ge f(x)$ for every x in the domain of f

The function

$$f(x) = x^2$$

has an **absolute minimum** at x = 0 because

 $f(0) \leq f(x)$ for every x in the domain of f

The function

$$f(x) = x^2$$

has an **absolute minimum** at x = 0 because

 $f(0) \leq f(x)$ for every x in the domain of f

The function

$$f(x) = -x^2$$

has an **absolute maximum** at x = 0 because

 $f(0) \ge f(x)$ for every x in the domain of f

Definition: Critical Number If f is a function and c is an element of the domain of f such that

$$f'(c) = 0$$

or

f'(c) does not exist

then we say that c is a **critical number** of f.

Critical Number

Example: 0 is a critical number of

$$f(x) = \mid x \mid$$

Critical Number

Example: 0 is a critical number of

 $f(x) = \mid x \mid$

Example: π is a critical number of

 $f(x) = \cos x$

Critical Number

Theorem: If *f* has a local maximum or minimum at x = c, then *x* is a critical number of *f*.

Theorem: If *f* has a local maximum or minimum at x = c, then *x* is a critical number of *f*.

Theorem: (Fermat's Theorem) If f has a local maximum or minimum at x = c and f'(c) exists, then

f'(c) = 0

Extreme Value Theorem

Theorem: (Extreme Value Theorem) If f is continuous on a **closed** interval [a, b] then f attains an absolute maximum f(c) and absolute minimum value f(d) at some values

 $c,d\in[a,b]$

Extreme Value Theorem

Theorem: (Extreme Value Theorem) If f is continuous on a **closed** interval [a, b] then f attains an absolute maximum f(c) and absolute minimum value f(d) at some values

 $c,d\in[a,b]$

The interval [a, b] has to be closed, that is, has to include its endpoints.

To find the **absolute** maximum and minimum values of a continuous function f on a closed interval [a, b]:

Find the value of f at all critical numbers of f in [a, b]

To find the **absolute** maximum and minimum values of a continuous function f on a closed interval [a, b]:

Find the value of f at all critical numbers of f in [a, b]Find the values of f at the endpoints of the interval: f(a) and f(b)

To find the **absolute** maximum and minimum values of a continuous function f on a closed interval [a, b]:

Find the value of f at all critical numbers of f in [a, b]

Find the values of f at the endpoints of the interval: f(a) and f(b)

The largest value produced by the previous two steps is the absolute maximum; the smallest is the absolute minimum of f on [a, b].

Example: Find the absolute max and min of $f(x) = 2x^2$ on [-1, 2].

f'(x) is 4x, which exists everywhere on [-1,2]. So, there are no values where f'(x) fails to exist and no critical numbers of that kind.

Example: Find the absolute max and min of $f(x) = 2x^2$ on [-1, 2].

f'(x) is 4x, which exists everywhere on [-1,2]. So, there are no values where f'(x) fails to exist and no critical numbers of that kind.

f'(x) = 0 at x = 0, so 0 is a critical number of f.

The set of values of f at critical numbers consists of the single value f(0) = 0.

The set of values of f at critical numbers consists of the single value f(0) = 0.

The set of values of f at critical numbers consists of the single value f(0) = 0.

The values of f at the endpoints are f(-1) = 2 and f(2) = 8.

Combining the values of f at critical numbers and endpoints, we have:

$$f(0) = 0$$

 $f(-1) = 2$
 $f(2) = 8$

The set of values of f at critical numbers consists of the single value f(0) = 0.

The values of f at the endpoints are f(-1) = 2 and f(2) = 8.

Combining the values of f at critical numbers and endpoints, we have:

$$f(0) = 0$$

 $f(-1) = 2$
 $f(2) = 8$

The absolute max is 8, the absolute min is 0.