
Local Minimum
Definition: Local Minimum

A function f has a local minimum (or relative minimum )
at x = c if

f(c) ≤ f(x) when x is near c
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Definition: Local Minimum
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Local Minimum
Definition: Local Minimum

A function f has a local minimum (or relative minimum )
at x = c if

f(c) ≤ f(x) when x is near c

This means that for some open interval (a, b) with a < c < b,

f(c) ≤ f(x) for all x ∈ (a, b)

The interval (a, b) may have to be chosen to be very small.

Maximum and Minimum Values – p.1/12



Local Minimum
Example:

The function
f(x) = cos x

has a local minimum at

x = π

so to apply the definition, choose c = π
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Local Minimum
Example:

The function
f(x) = cos x

has a local minimum at

x = π

so to apply the definition, choose c = π

If we choose an interval containing π, say (π/2, 3π/2),

f(c) = cos(π) = −1 ≤ cos(x) for all x ∈

(

π

2
,
3π

2

)
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Local Maximum
Definition: Local Maximum

A function f has a local maximum (or relative maximum )
at x = c if

f(c) ≥ f(x) when x is near c
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Local Maximum
Definition: Local Maximum
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Local Maximum
Definition: Local Maximum

A function f has a local maximum (or relative maximum )
at x = c if

f(c) ≥ f(x) when x is near c

This means that for some open interval (a, b) with a < c < b,

f(c) ≥ f(x) for all x ∈ (a, b)

Again, the interval (a, b) may have to be chosen to be very

small.
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Local Maximum
Example:

The function
f(x) = sinx

has a local maximum at

x =
π

2

so to apply the definition, choose c = π/2
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Local Maximum
Example:

The function
f(x) = sinx

has a local maximum at

x =
π

2

so to apply the definition, choose c = π/2

For every value of x in (0, π),

f(c) = sin(π/2) = 1 ≥ sin(x) for all x ∈ (0, π)
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Absolute Minimum, Maximum
Definition: Absolute Minimum

A function f has an absolute minimum (or global
minimum ) at x = c if

f(c) ≤ f(x) for every x in the domain of f
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Absolute Minimum, Maximum
Definition: Absolute Minimum

A function f has an absolute minimum (or global
minimum ) at x = c if

f(c) ≤ f(x) for every x in the domain of f

Definition: Absolute Maximum

A function f has an absolute maximum (or global
maximum ) at x = c if

f(c) ≥ f(x) for every x in the domain of f
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Absolute Minimum, Maximum

The function
f(x) = x2

has an absolute minimum at x = 0 because

f(0) ≤ f(x) for every x in the domain of f
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Absolute Minimum, Maximum

The function
f(x) = x2

has an absolute minimum at x = 0 because

f(0) ≤ f(x) for every x in the domain of f

The function
f(x) = −x2

has an absolute maximum at x = 0 because

f(0) ≥ f(x) for every x in the domain of f
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Critical Number

Definition: Critical Number If f is a function and c is an
element of the domain of f such that

f ′(c) = 0

or
f ′(c) does not exist

then we say that c is a critical number of f .
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Critical Number

Example: 0 is a critical number of

f(x) =| x |
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Critical Number

Example: 0 is a critical number of

f(x) =| x |

Example: π is a critical number of

f(x) = cos x
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Critical Number

Theorem: If f has a local maximum or minimum at x = c,
then x is a critical number of f .
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Critical Number

Theorem: If f has a local maximum or minimum at x = c,
then x is a critical number of f .

Theorem: (Fermat’s Theorem) If f has a local maximum
or minimum at x = c and f ′(c) exists, then

f ′(c) = 0
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Extreme Value Theorem

Theorem: (Extreme Value Theorem) If f is continuous on
a closed interval [a, b] then f attains an absolute maximum
f(c) and absolute minimum value f(d) at some values

c, d ∈ [a, b]
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Extreme Value Theorem

Theorem: (Extreme Value Theorem) If f is continuous on
a closed interval [a, b] then f attains an absolute maximum
f(c) and absolute minimum value f(d) at some values

c, d ∈ [a, b]

The interval [a, b] has to be closed, that is, has to include its

endpoints.

Maximum and Minimum Values – p.10/12



Closed Interval Method

To find the absolute maximum and minimum values of a
continuous function f on a closed interval [a, b]:

Find the value of f at all critical numbers of f in [a, b]
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Closed Interval Method

To find the absolute maximum and minimum values of a
continuous function f on a closed interval [a, b]:

Find the value of f at all critical numbers of f in [a, b]

Find the values of f at the endpoints of the interval:
f(a) and f(b)
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Closed Interval Method

To find the absolute maximum and minimum values of a
continuous function f on a closed interval [a, b]:

Find the value of f at all critical numbers of f in [a, b]

Find the values of f at the endpoints of the interval:
f(a) and f(b)

The largest value produced by the previous two steps is
the absolute maximum; the smallest is the absolute
minimum of f on [a, b].
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Closed Interval Method
Example: Find the absolute max and min of f(x) = 2x2 on
[−1, 2].

f ′(x) is 4x, which exists everywhere on [−1, 2]. So, there are
no values where f ′(x) fails to exist and no critical numbers
of that kind.
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Closed Interval Method
Example: Find the absolute max and min of f(x) = 2x2 on
[−1, 2].

f ′(x) is 4x, which exists everywhere on [−1, 2]. So, there are
no values where f ′(x) fails to exist and no critical numbers
of that kind.

f ′(x) = 0 at x = 0, so 0 is a critical number of f .

The set of values of f at critical numbers consists of the
single value f(0) = 0.
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Closed Interval Method
The set of values of f at critical numbers consists of the
single value f(0) = 0.
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Closed Interval Method
The set of values of f at critical numbers consists of the
single value f(0) = 0.

The values of f at the endpoints are f(−1) = 2 and f(2) = 8.

Combining the values of f at critical numbers and
endpoints, we have:

f(0) = 0

f(−1) = 2

f(2) = 8
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Closed Interval Method
The set of values of f at critical numbers consists of the
single value f(0) = 0.

The values of f at the endpoints are f(−1) = 2 and f(2) = 8.

Combining the values of f at critical numbers and
endpoints, we have:

f(0) = 0

f(−1) = 2

f(2) = 8

The absolute max is 8, the absolute min is 0.

Maximum and Minimum Values – p.13/12
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