Local Minimum

Definition: Local Minimum

A function f has a local minimum (or relative minimum) at $x=c$ if

$$
f(c) \leq f(x) \quad \text { when } x \text { is near } c
$$

Local Minimum

Definition: Local Minimum

A function f has a local minimum (or relative minimum) at $x=c$ if

$$
f(c) \leq f(x) \quad \text { when } x \text { is near } c
$$

This means that for some open interval (a, b) with $a<c<b$,

$$
f(c) \leq f(x) \quad \text { for all } x \in(a, b)
$$

Local Minimum

Definition: Local Minimum

A function f has a local minimum (or relative minimum) at $x=c$ if

$$
f(c) \leq f(x) \quad \text { when } x \text { is near } c
$$

This means that for some open interval (a, b) with $a<c<b$,

$$
f(c) \leq f(x) \quad \text { for all } x \in(a, b)
$$

The interval (a, b) may have to be chosen to be very small.

Local Minimum

Example:

The function

$$
f(x)=\cos x
$$

has a local minimum at

$$
x=\pi
$$

so to apply the definition, choose $c=\pi$

Local Minimum

Example:

The function

$$
f(x)=\cos x
$$

has a local minimum at

$$
x=\pi
$$

so to apply the definition, choose $c=\pi$
If we choose an interval containing π, say $(\pi / 2,3 \pi / 2)$,

$$
f(c)=\cos (\pi)=-1 \leq \cos (x) \quad \text { for all } x \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)
$$

Local Maximum

Definition: Local Maximum

A function f has a local maximum (or relative maximum) at $x=c$ if

$$
f(c) \geq f(x) \quad \text { when } x \text { is near } c
$$

Local Maximum

Definition: Local Maximum

A function f has a local maximum (or relative maximum) at $x=c$ if

$$
f(c) \geq f(x) \quad \text { when } x \text { is near } c
$$

This means that for some open interval (a, b) with $a<c<b$,

$$
f(c) \geq f(x) \quad \text { for all } x \in(a, b)
$$

Local Maximum

Definition: Local Maximum

A function f has a local maximum (or relative maximum) at $x=c$ if

$$
f(c) \geq f(x) \quad \text { when } x \text { is near } c
$$

This means that for some open interval (a, b) with $a<c<b$,

$$
f(c) \geq f(x) \quad \text { for all } x \in(a, b)
$$

Again, the interval (a, b) may have to be chosen to be very small.

Local Maximum

Example:

The function

$$
f(x)=\sin x
$$

has a local maximum at

$$
x=\frac{\pi}{2}
$$

so to apply the definition, choose $c=\pi / 2$

Local Maximum

Example:

The function

$$
f(x)=\sin x
$$

has a local maximum at

$$
x=\frac{\pi}{2}
$$

so to apply the definition, choose $c=\pi / 2$
For every value of x in $(0, \pi)$,

$$
f(c)=\sin (\pi / 2)=1 \geq \sin (x) \quad \text { for all } x \in(0, \pi)
$$

Absolute Minimum, Maximum

Definition: Absolute Minimum

A function f has an absolute minimum (or global minimum) at $x=c$ if
$f(c) \leq f(x) \quad$ for every x in the domain of f

Absolute Minimum, Maximum

Definition: Absolute Minimum

A function f has an absolute minimum (or global minimum) at $x=c$ if

$$
f(c) \leq f(x) \quad \text { for every } x \text { in the domain of } f
$$

Definition: Absolute Maximum

A function f has an absolute maximum (or global maximum) at $x=c$ if

$$
f(c) \geq f(x) \quad \text { for every } x \text { in the domain of } f
$$

Absolute Minimum, Maximum

The function

$$
f(x)=x^{2}
$$

has an absolute minimum at $x=0$ because
$f(0) \leq f(x)$ for every x in the domain of f

Absolute Minimum, Maximum

The function

$$
f(x)=x^{2}
$$

has an absolute minimum at $x=0$ because

$$
f(0) \leq f(x) \quad \text { for every } x \text { in the domain of } f
$$

The function

$$
f(x)=-x^{2}
$$

has an absolute maximum at $x=0$ because
$f(0) \geq f(x)$ for every x in the domain of f

Critical Number

Definition: Critical Number If f is a function and c is an element of the domain of f such that

$$
f^{\prime}(c)=0
$$

or

$$
f^{\prime}(c) \text { does not exist }
$$

then we say that c is a critical number of f.

Critical Number

Example: 0 is a critical number of

$$
f(x)=|x|
$$

Critical Number

Example: 0 is a critical number of

$$
f(x)=|x|
$$

Example: π is a critical number of

$$
f(x)=\cos x
$$

Critical Number

Theorem: If f has a local maximum or minimum at $x=c$, then x is a critical number of f.

Critical Number

Theorem: If f has a local maximum or minimum at $x=c$, then x is a critical number of f.

Theorem: (Fermat's Theorem) If f has a local maximum or minimum at $x=c$ and $f^{\prime}(c)$ exists, then

$$
f^{\prime}(c)=0
$$

Extreme Value Theorem

Theorem: (Extreme Value Theorem) If f is continuous on a closed interval $[a, b]$ then f attains an absolute maximum $f(c)$ and absolute minimum value $f(d)$ at some values

$$
c, d \in[a, b]
$$

Extreme Value Theorem

Theorem: (Extreme Value Theorem) If f is continuous on a closed interval $[a, b]$ then f attains an absolute maximum $f(c)$ and absolute minimum value $f(d)$ at some values

$$
c, d \in[a, b]
$$

The interval $[a, b]$ has to be closed, that is, has to include its endpoints.

Closed Interval Method

To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

Find the value of f at all critical numbers of f in $[a, b]$

Closed Interval Method

To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

Find the value of f at all critical numbers of f in $[a, b]$
Find the values of f at the endpoints of the interval:
$f(a)$ and $f(b)$

Closed Interval Method

To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

Find the value of f at all critical numbers of f in $[a, b]$
Find the values of f at the endpoints of the interval: $f(a)$ and $f(b)$

The largest value produced by the previous two steps is the absolute maximum; the smallest is the absolute minimum of f on $[a, b]$.

Closed Interval Method

Example: Find the absolute max and min of $f(x)=2 x^{2}$ on $[-1,2]$.
$f^{\prime}(x)$ is $4 x$, which exists everywhere on $[-1,2]$. So, there are no values where $f^{\prime}(x)$ fails to exist and no critical numbers of that kind.

Closed Interval Method

Example: Find the absolute max and min of $f(x)=2 x^{2}$ on $[-1,2]$.
$f^{\prime}(x)$ is $4 x$, which exists everywhere on $[-1,2]$. So, there are no values where $f^{\prime}(x)$ fails to exist and no critical numbers of that kind.
$f^{\prime}(x)=0$ at $x=0$, so 0 is a critical number of f.
The set of values of f at critical numbers consists of the single value $f(0)=0$.

Closed Interval Method

The set of values of f at critical numbers consists of the single value $f(0)=0$.

Closed Interval Method

The set of values of f at critical numbers consists of the single value $f(0)=0$.

The values of f at the endpoints are $f(-1)=2$ and $f(2)=8$.
Combining the values of f at critical numbers and endpoints, we have:

$$
\begin{aligned}
& f(0)=0 \\
& f(-1)=2 \\
& f(2)=8
\end{aligned}
$$

Closed Interval Method

The set of values of f at critical numbers consists of the single value $f(0)=0$.

The values of f at the endpoints are $f(-1)=2$ and $f(2)=8$.
Combining the values of f at critical numbers and endpoints, we have:

$$
\begin{aligned}
& f(0)=0 \\
& f(-1)=2 \\
& f(2)=8
\end{aligned}
$$

The absolute max is 8 , the absolute \min is 0 .

