Related Rates

The formula for the area of a circle is

$$
A=\pi r^{2}
$$

The formula expresses a relationship between the area of the circle A and its radius r

Related Rates

The formula for the area of a circle is

$$
A=\pi r^{2}
$$

The formula expresses a relationship between the area of the circle A and its radius r

Suppose we are told that the dimensions of the circle are changing over time.

Now, think of the area and radius as functions of the independent variable t :
$\mathrm{r}(\mathrm{t})=$ radius at time t
$\mathrm{A}(\mathrm{t})=$ area at time t

Related Rates

We can rewrite the area formula to reflect our new viewpoint that A and r are functions of t :

$$
A(t)=\pi[r(t)]^{2}
$$

The relationship between the area and radius has not been changed by the fact that both are time varying (that is, functions of t).

Related Rates

We can rewrite the area formula to reflect our new viewpoint that A and r are functions of t :

$$
A(t)=\pi[r(t)]^{2}
$$

The relationship between the area and radius has not been changed by the fact that both are time varying (that is, functions of t).

Assuming that $A(t)$ and $r(t)$ are differentiable, we should be able to differentiate both sides of this expression with respect to t.

To do this, we use the technique of implicit differentiation.

Related Rates

If we encounter a function of t by itself, say

$$
A(t)
$$

we simply replace it by its derivative

$$
\frac{d A}{d t}
$$

Related Rates

If we encounter a function of t by itself, say

$$
A(t)
$$

we simply replace it by its derivative

$$
\frac{d A}{d t}
$$

If we encounter a composite function, for example,

$$
\pi \cdot[r(t)]^{2}
$$

we apply the chain rule with inner function

$$
g(t)=r(t)
$$

Related Rates

In this case the outer function is

$$
f(u)=u^{2}
$$

so we apply the chain rule with

$$
\begin{gathered}
f(u)=u^{2} \\
g(t)=r(t)
\end{gathered}
$$

Related Rates

In this case the outer function is

$$
f(u)=u^{2}
$$

so we apply the chain rule with

$$
\begin{gathered}
f(u)=u^{2} \\
g(t)=r(t)
\end{gathered}
$$

The result is

$$
\frac{d}{d t}[r(t)]^{2}=f^{\prime}(g(t)) \cdot g^{\prime}(t)
$$

or

$$
2 r(t) \frac{d r}{d t}
$$

Related Rates

So we have differentiated both sides of the revised area equation

$$
A(t)=\pi[r(t)]^{2}
$$

which relates the area and radius of the circle, and obtained a new equation

$$
\frac{d A}{d t}=2 \pi \cdot r(t) \frac{d r}{d t}
$$

which relates the rates of change of the area and radius.
This is where the section title, Related Rates comes from.

Related Rates

The new equation says that if at some time t, the rate of change of the radius is

$$
\frac{d r}{d t}
$$

at that instant the rate of change of the area, $d A / d t$ is

$$
2 \pi r(t) \frac{d r}{d t}
$$

Note that we need both $d r / d t$ and $r(t)$ to determine $d A / d t$.

Related Rates

In principle, we can turn any formula into one relating rates of change by implicit differentation.

Related Rates

In principle, we can turn any formula into one relating rates of change by implicit differentation.

The formula for the volume of a sphere is

$$
V=\frac{4}{3} \pi r^{3}
$$

Related Rates

In principle, we can turn any formula into one relating rates of change by implicit differentation.

The formula for the volume of a sphere is

$$
V=\frac{4}{3} \pi r^{3}
$$

Considering V and r as functions of time $V(t)$ and $r(t)$ and using implicit differentiation with respect to t, we get

$$
\frac{d V}{d t}=4 \pi r^{2} \cdot \frac{d r}{d t}
$$

Related Rates

$$
\frac{d V}{d t}=4 \pi r^{2} \cdot \frac{d r}{d t}
$$

This formula relates the time rate of change of the volume to the time rate of change of the radius.

Related Rates

The formula for the surface area of a sphere is

$$
A=4 \pi r^{2}
$$

Related Rates

The formula for the surface area of a sphere is

$$
A=4 \pi r^{2}
$$

Considering A and r as functions of time $A(t)$ and $r(t)$ and using implicit differentiation with respect to t, we get

$$
\frac{d A}{d t}=8 \pi r \cdot \frac{d r}{d t}
$$

Related Rates

The formula for the surface area of a sphere is

$$
A=4 \pi r^{2}
$$

Considering A and r as functions of time $A(t)$ and $r(t)$ and using implicit differentiation with respect to t, we get

$$
\frac{d A}{d t}=8 \pi r \cdot \frac{d r}{d t}
$$

This formula relates the time rate of change of the surface area of a sphere to the time rate of change of the radius.

Related Rates

If x and y are the sides of a right triangle, and z is the hypotenuse, the three lengths are related by the pythagorean formula

$$
z^{2}=x^{2}+y^{2}
$$

Related Rates

If x and y are the sides of a right triangle, and z is the hypotenuse, the three lengths are related by the pythagorean formula

$$
z^{2}=x^{2}+y^{2}
$$

Considering x, y and z as functions of time $x(t), y(t)$, and $z(t)$, we can use implicit differentiation with respect to t to get

$$
2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}
$$

Related Rates

If x and y are the sides of a right triangle, and z is the hypotenuse, the three lengths are related by the pythagorean formula

$$
z^{2}=x^{2}+y^{2}
$$

Considering x, y and z as functions of time $x(t), y(t)$, and $z(t)$, we can use implicit differentiation with respect to t to get

$$
2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}
$$

This formula relates the time rates of change of the sides of the triangle to each other.

