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Exponential Decay
Suppose the time rate of decrease of the quantity of
something is proportional to that quantity:

dy

dt
= ky

As we have seen, this is all we need to know to conclude
that the amount present at time t will be given by

y(t) = y(0)ekt

This is true because the exponential function is the only
function that satisfies the differential equation y′ = ky.

As a result, remarkably little information is required to
completely characterize the process.
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Exponential Decay
In an exponential decay process, the time required for half
of the material present to disappear is always the same.

Stewart Section 3.8 – p. 2/15



Exponential Decay
In an exponential decay process, the time required for half
of the material present to disappear is always the same.

This quantity is called the half-life th and is independent of
the quantity present at the start:

1

2
y(0) = y(0)ekth so

1

2
= ekth

⇒ k =
ln(1

2)

th

Stewart Section 3.8 – p. 2/15



Exponential Decay
In an exponential decay process, the time required for half
of the material present to disappear is always the same.

This quantity is called the half-life th and is independent of
the quantity present at the start:

1

2
y(0) = y(0)ekth so

1

2
= ekth

⇒ k =
ln(1

2)

th

Then the quantity left at time t is:

y(t) = y(0)ekt = y(0) · e
ln( 1

2
)

“

t

th

”

= y(0) ·

(

1

2

)

“

t

t
h

”

Stewart Section 3.8 – p. 2/15



Exponential Decay
In an exponential decay process, the time required for half
of the material present to disappear is always the same.

This quantity is called the half-life th and is independent of
the quantity present at the start:

1

2
y(0) = y(0)ekth so

1

2
= ekth

⇒ k =
ln(1

2)

th

Then the quantity left at time t is:

y(t) = y(0)ekt = y(0) · e
ln( 1

2
)

“

t

th

”

= y(0) ·

(

1

2

)

“

t

t
h

”

Stewart Section 3.8 – p. 2/15



Exponential Decay
polonium-210 has a half-life of 140 days. How much of an
original sample of 300mg is left after 180 days?
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Exponential Decay
polonium-210 has a half-life of 140 days. How much of an
original sample of 300mg is left after 180 days?

The equation for the quantity remaining at time t is:

y(t) = y(0) ·

(

1

2

)

“

t

th

”

The quantity remaining after 180 days is:

y(180) = 300 ·

(

1

2

)( 180

140
)

= 123.05mg
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Question 1
bismuth-210 has a half-life of 5 days. How much of a
sample of 200mg is left after 14 days?

1. 16.48mg 4. 28.71mg

2. 92.57mg 5. 103.82mg

3. 54.67mg 6. cannot be determined
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Set y(t) equal to 0.9 · y(0) and solve for t:

y(t) = 0.1 · y(0) = y(0) ·

(

1

2

)

“

t

th

”

⇒ 0.1 = e
ln( 1

2
)

“

t

th

”

Stewart Section 3.8 – p. 5/15



Exponential Decay
polonium-210 has a half-life of 140 days. How long does it
take for 90% of a sample to decay?

Set y(t) equal to 0.9 · y(0) and solve for t:

y(t) = 0.1 · y(0) = y(0) ·

(
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ln( 1
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Taking the natrual logarithm of each side gives:

ln 0.1 = ln

(

1

2

)(

t

th

)

so

t =
th ln 0.1

ln
(

1
2

) =
140 · ln 0.1

ln
(

1
2

) = 465 days
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Question 2
carbon-14 has a half-life of 5730 years. How long does it
take for 34% of a sample to decay?

1. 2042yrs 4. 7062yrs

2. 6390yrs 5. 3435yrs

3. 5531yrs 6. cannot be determined
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Question 2
carbon-14 has a half-life of 5730 years. How long does it
take for 34% of a sample to decay?

1. 2042yrs 4. 7062yrs

2. 6390yrs 5. 3435yrs

3. 5531yrs 6. cannot be determined

5. 3435yrs.

t =
5730 · ln(1 − 0.34)

ln
(

1
2

) = 3435 years
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Exponential Growth
In an exponential growth process, the time required for the
material present to double is always the same.
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This quantity is called the doubling time td and is
independent of the quantity present at the start:

2y(0) = y(0)ektd so 2 = ektd
⇒ k =

ln 2
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Then the quantity present at time t is:
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Exponential Growth
A bacteria culture starts with 1000 cells and doubles every 2
hours. How many cells are there after 6 hours?
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Exponential Growth
A bacteria culture starts with 1000 cells and doubles every 2
hours. How many cells are there after 6 hours?

The equation for the number of cells at time t is:

y(t) = y(0) · (2)

“

t

td

”

= 1000 · (2)(
t

2
)

The number of cells present after 6 hours is:

y(6) = 1000 · (2)(
6

2
) = 8000 cells
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Question 3
An experiment with fruit flies finds that the doubling time for
the population of Bactrocera zonata on a wheat shorts diet
is 2.78 days (Hussain, 1995). If we start with a population of
100 flies, what is the number of flies after 20 days?

1. 14, 645 4. 15, 089

2. 12, 432 5. 16, 006

3. 13, 167 6. cannot be determined
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Question 3
An experiment with fruit flies finds that the doubling time for
the population of Bactrocera zonata on a wheat shorts diet
is 2.78 days (Hussain, 1995). If we start with a population of
100 flies, what is the number of flies after 20 days?

1. 14, 645 4. 15, 089

2. 12, 432 5. 16, 006

3. 13, 167 6. cannot be determined

1. 14, 645.

y(20) = 100 · 2
20

2.78 = 14, 645
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Exponential Growth
Suppose a virus culture starts with 200 particles and has a
doubling time of 3 hours. How long does it take for the
culture to reach 10, 000 particles?
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Set y(t) equal to 10, 000 and solve for t:
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Exponential Growth
Suppose a virus culture starts with 200 particles and has a
doubling time of 3 hours. How long does it take for the
culture to reach 10, 000 particles?

Set y(t) equal to 10, 000 and solve for t:

y(t) = 10000 = 200 · (2)(
t

3
)
⇒ 50 = eln(2)( t

3
)

Taking the natrual logarithm of each side gives:

ln 50 = ln (2)

(

t

3

)

so

t =
3 · ln 50

ln 2
= 16.93 hours
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Question 4
An experiment with fruit flies finds that the doubling time for
the population of Bactrocera zonata on a wheat shorts diet
is 2.78 days (Hussain, 1995). If we start with a population of
100 flies, how many days does it take for the population to
reach 4, 000 flies?

1. 13.91 4. 14.02

2. 15.33 5. 16.21

3. 14.79 6. cannot be determined
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Question 4
An experiment with fruit flies finds that the doubling time for
the population of Bactrocera zonata on a wheat shorts diet
is 2.78 days (Hussain, 1995). If we start with a population of
100 flies, how many days does it take for the population to
reach 4, 000 flies?

1. 13.91 4. 14.02

2. 15.33 5. 16.21

3. 14.79 6. cannot be determined

3. 14.79.

t =
2.78 · ln 40

ln 2
= 14.79 days
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Exponential Cooling
Suppose the heat is turned off under a pot of boiling water.
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Exponential Cooling
Suppose the heat is turned off under a pot of boiling water
(212◦F ) in a room with an ambient temperature of 70◦F .
After 10 minutes, the temperature has dropped to (160◦F ).
What is the temperature of the water after 30 minutes?

Stewart Section 3.8 – p. 13/15



Exponential Cooling
Suppose the heat is turned off under a pot of boiling water
(212◦F ) in a room with an ambient temperature of 70◦F .
After 10 minutes, the temperature has dropped to (160◦F ).
What is the temperature of the water after 30 minutes?

Let
y = T − Tambient

Then
y(0) = 212 − 70 = 142

and
y(10) = 160 − 70 = 90
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Exponential Cooling
Our exponential cooling equation is then:

y(t) = y(0) · ekt so 90 = 142ek·10 and
90

142
= ek·10
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Exponential Cooling
Our exponential cooling equation is then:

y(t) = y(0) · ekt so 90 = 142ek·10 and
90

142
= ek·10

Taking logs of both sides, we get

ln
90

142
= k · 10 so k =

ln 90
142

10
= −0.0456

Then

y(t) = 142 · e−0.0456t and y(30) = 142 · e−0.0456·30 = 36.15

So after 30 minutes, the water is 36.15◦F above ambient, or
106.15◦F .
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Question 5
Cooling water from a power plant is pumped into a holding
tank at 90◦C. After 20 minutes, the temperature has
dropped to 81◦C. If the ambient temperature is 24◦C, what
is the temperature of the water after 2 hours?

1. 47.64 4. 44.02

2. 51.39 5. 46.21

3. 55.21 6. cannot be determined
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Question 5
Cooling water from a power plant is pumped into a holding
tank at 90◦C. After 20 minutes, the temperature has
dropped to 81◦C. If the ambient temperature is 24◦C, what
is the temperature of the water after 2 hours?

1. 47.64 4. 44.02

2. 51.39 5. 46.21

3. 55.21 6. cannot be determined

2. 51.39. y(0) = 90 − 24 = 66 and y(20) = 81 − 24 = 57. So

ln
57

66
= k · 20 so k =

ln 57
66

20
= −0.00733

then

y(120) = 66 · e−0.00733·120 = 27.39 T120 = 27.39 + 24 = 51.39
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