Stewart Section 3.5 - The Chain Rule

Gene Quinn

The Chain Rule

The differentiation formulas we have so far enable us to calculate derivatives for many of the most commonly encountered functions, provided they have the form

$$
y=f(x)
$$

The Chain Rule

The differentiation formulas we have so far enable us to calculate derivatives for many of the most commonly encountered functions, provided they have the form

$$
y=f(x)
$$

For example, if $f(x)=e^{x}$, the exponential function rule tells us that

$$
\frac{d f}{d x}=\frac{d}{d x} e^{x}=e^{x}
$$

The Chain Rule

Unfortunately, it does not tell us how to handle a function like

$$
f(x)=e^{2 x},
$$

where we have an exponential function not of the independent variable, x, but of some function of the independent variable ($2 x$ in this case).

The Chain Rule

More often than not, the functions we encounter in applications turn out to be composite functions like the previous example.

Luckily, there is an important result known as the chain rule that allows us to extend the rules we have to composite functions.

The Chain Rule

More often than not, the functions we encounter in applications turn out to be composite functions like the previous example.

Luckily, there is an important result known as the chain rule that allows us to extend the rules we have to composite functions.

This is what makes the chain rule so important - without it, the other rules are somewhat limited in scope.

However, in combination with the chain rule, the rules will allow us to differentiate almost any function we are likely to encounter in an application.

The Chain Rule

The key idea is to express $f(x)$ as a composite function, that is, a composition of two functions:

$$
(f \circ g)(x)
$$

The Chain Rule

The key idea is to express $f(x)$ as a composite function, that is, a composition of two functions:

$$
(f \circ g)(x)
$$

In the preceding example, if we let

$$
g(x)=2 x
$$

then our original function is a composite function,

$$
e^{2 x}=f(2 x)=f(g(x))=(f \circ g)(x)
$$

with

$$
f(x)=e^{x} \quad \text { and } \quad g(x)=2 x
$$

The Chain Rule

When we have a composite function

$$
(f \circ g)(x)=f(g(x))
$$

f referred to as the outer function, and g is called the inner function.

The Chain Rule

When we have a composite function

$$
(f \circ g)(x)=f(g(x))
$$

f referred to as the outer function, and g is called the inner function.

In this case the outer function f is

$$
f(x)=e^{x}
$$

and the inner function g is

$$
g(x)=2 x
$$

The Chain Rule

To avoid confusion, it is customary to use different letters for the independent variables of the outer and inner functions.

The Chain Rule

To avoid confusion, it is customary to use different letters for the independent variables of the outer and inner functions.

Recall that the notations

$$
f(x)=e^{x} \quad f(u)=e^{u} \quad f(z)=e^{z} \quad f(\theta)=e^{\theta}
$$

all describe exactly the same function. The letter symbolizing the independent variable is just a kind of placeholder.

The Chain Rule

$$
f(x)=e^{x} \quad f(u)=e^{u} \quad f(z)=e^{z} \quad f(\theta)=e^{\theta}
$$

Since we can use any letter we choose, it is generally considered good form to choose different letters for the independent variables of the inner and outer functions.

Very often, u is used for the outer function, and x for the inner function.

It should be emphasized that we can choose any letter for either role.

The Chain Rule

If we write u for the independent variable of the outer function, the function of our example

$e^{2 x}$

becomes:

$$
\begin{array}{ll}
f(u)=e^{u} & \text { outer function } \\
g(x)=2 x & \text { inner function }
\end{array}
$$

The Chain Rule - Prime Notation

With these notational conventions in mind, we can now state the chain rule in two equivalent forms.

The Chain Rule - Prime Notation

With these notational conventions in mind, we can now state the chain rule in two equivalent forms.

If f and g are differentiable, and

$$
F=f \circ g
$$

is the composite function defined by

$$
F(x)=f(g(x))
$$

then

$$
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

The Chain Rule - Leibnitz Notation

We can also express the chain rule using Leibnitz notation.
If

$$
y=f(u)
$$

and

$$
u=g(x)
$$

are differentiable functions, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

The Chain Rule - Example

Let's return to the function

$$
e^{2 x}
$$

and apply the chain rule.

The Chain Rule - Example

Let's return to the function

$$
e^{2 x}
$$

and apply the chain rule.
The key is to recoginze this as a composite function $F=f \circ g$ with

$$
f(u)=e^{u} \quad \text { outer function }
$$

and

$$
g(x)=2 x \quad \text { inner function }
$$

The Chain Rule - Example

Let's return to the function

$$
e^{2 x}
$$

and apply the chain rule.
The key is to recoginze this as a composite function $F=f \circ g$ with

$$
f(u)=e^{u} \quad \text { outer function }
$$

and

$$
g(x)=2 x \quad \text { inner function }
$$

Using prime notation,

$$
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=f^{\prime}(2 x) \cdot g^{\prime}(x)
$$

The Chain Rule - Example

Now we can apply our exponential rule to

$$
f(u)=e^{u}
$$

to get

$$
f^{\prime}(u)=e^{u}
$$

The Chain Rule - Example

Now we can apply our exponential rule to

$$
f(u)=e^{u}
$$

to get

$$
f^{\prime}(u)=e^{u}
$$

We apply the rules as well to g :

$$
\begin{aligned}
& g(x)=2 x \\
& g^{\prime}(x)=2
\end{aligned}
$$

The Chain Rule - Example

Now we can apply our exponential rule to

$$
f(u)=e^{u}
$$

to get

$$
f^{\prime}(u)=e^{u}
$$

We apply the rules as well to g :

$$
\begin{aligned}
& g(x)=2 x \\
& g^{\prime}(x)=2
\end{aligned}
$$

Finally, substitute $2 x$ for u in the expression for f^{\prime} and then

$$
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=f^{\prime}(2 x) \cdot g^{\prime}(x)=e^{2 x} \cdot 2=2 e^{2 x}
$$

The Chain Rule - Example

To apply the chain rule using the Leibnitz notation, again let

$$
f(u)=e^{u}
$$

and

$$
g(x)=2 x
$$

The Chain Rule - Example

To apply the chain rule using the Leibnitz notation, again let

$$
f(u)=e^{u}
$$

and

$$
g(x)=2 x
$$

Then if $y=f(u)=e^{u}$ and $u=g(x)=2 x$,

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=e^{u} \cdot 2=2 e^{u}=2 e^{2 x}
$$

The Chain Rule - Step by Step

Given a composite function $(f \circ g)(x)=f(g(x))$,
Step 1: Identify the inner and outer functions,

$$
f(u) \text { and } g(x)
$$

The Chain Rule - Step by Step

Given a composite function $(f \circ g)(x)=f(g(x))$, Step 1: Identify the inner and outer functions,

$$
f(u) \text { and } g(x)
$$

Step 2: Find the derivatives of each function:

$$
f^{\prime}(u) \text { and } g^{\prime}(x)
$$

The Chain Rule - Step by Step

Given a composite function $(f \circ g)(x)=f(g(x))$,
Step 1: Identify the inner and outer functions,

$$
f(u) \text { and } g(x)
$$

Step 2: Find the derivatives of each function:

$$
f^{\prime}(u) \text { and } g^{\prime}(x)
$$

Step 3: Substitute $g(x)$ for u in the expression for $f^{\prime}(u)$:

$$
f^{\prime}(u) \quad \rightarrow \quad f^{\prime}(g(x))
$$

The Chain Rule - Step by Step

Given a composite function $(f \circ g)(x)=f(g(x))$,
Step 1: Identify the inner and outer functions,

$$
f(u) \text { and } g(x)
$$

Step 2: Find the derivatives of each function:

$$
f^{\prime}(u) \quad \text { and } \quad g^{\prime}(x)
$$

Step 3: Substitute $g(x)$ for u in the expression for $f^{\prime}(u)$:

$$
f^{\prime}(u) \quad \rightarrow \quad f^{\prime}(g(x))
$$

Step 4: Finally, multiply the result by $g^{\prime}(x)$ to get:

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

