Stewart Section 3.4

Gene Quinn

As with algebraic functions, we can apply the definition of a derivative to trigonometric functions to obtain forumlas for their derivatives.

As with algebraic functions, we can apply the definition of a derivative to trigonometric functions to obtain forumlas for their derivatives.

The resulting formulas for \sin , \cos , and tan are:

$$\frac{d}{dx}(\sin x) = \cos x$$
 $\frac{d}{dx}(\cos x) = -\sin x$ $\frac{d}{dx}(\tan x) = \sec^2 x$

The formulas for csc, sec, and cot are:

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Trigonometric Functions - A Short Rev

The single most important trigonometric identity is the following:

$$\sin^2 x + \cos^2 x = 1$$

Trigonometric Functions - A Short Rev

The single most important trigonometric identity is the following:

$$\sin^2 x + \cos^2 x = 1$$

The notations

$$\sin^2 x$$
 and $\cos^2 x$

are interpreted as

$$(\sin x)^2$$
 and $(\cos x)^2$,

respectively.

The key to applying the definition of a derivative to trigonometric functions is the following important limits, which are derived in the text:

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$$