Stewart Section 3.4

Gene Quinn

Derivatives of Trigonometric Functions

As with algebraic functions, we can apply the definition of a derivative to trigonometric functions to obtain forumlas for their derivatives.

Derivatives of Trigonometric Functions

As with algebraic functions, we can apply the definition of a derivative to trigonometric functions to obtain forumlas for their derivatives.

The resulting formulas for sin, cos, and tan are:

$$
\frac{d}{d x}(\sin x)=\cos x \quad \frac{d}{d x}(\cos x)=-\sin x \quad \frac{d}{d x}(\tan x)=\sec ^{2} x
$$

Derivatives of Trigonometric Functions

The formulas for csc, sec, and cot are:

$$
\begin{aligned}
\frac{d}{d x}(\csc x) & =-\csc x \cot x \\
\frac{d}{d x}(\sec x) & =\sec x \tan x \\
\frac{d}{d x}(\cot x) & =-\csc ^{2} x
\end{aligned}
$$

Trigonometric Functions - A Short Rev

The single most important trigonometric identity is the following:

$$
\sin ^{2} x+\cos ^{2} x=1
$$

Trigonometric Functions - A Short Rev

The single most important trigonometric identity is the following:

$$
\sin ^{2} x+\cos ^{2} x=1
$$

The notations

$$
\sin ^{2} x \text { and } \cos ^{2} x
$$

are interpreted as

$$
(\sin x)^{2} \quad \text { and } \quad(\cos x)^{2},
$$

respectively.

Derivatives of Trigonometric Functions

The key to applying the definition of a derivative to trigonometric functions is the following important limits, which are derived in the text:

$$
\begin{gathered}
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \\
\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0
\end{gathered}
$$

