

Gene Quinn

What f^{\prime} Says About f

Because the derivative f^{\prime} reflects in some sense the rate of change of the original function f, it's not suprising that, given information about f^{\prime} (in particular, its sign), we can infer something about whether f is increasing or decreasing at a point or on an interval.

What f^{\prime} Says About f

Because the derivative f^{\prime} reflects in some sense the rate of change of the original function f, it's not suprising that, given information about f^{\prime} (in particular, its sign), we can infer something about whether f is increasing or decreasing at a point or on an interval.

If

$$
f^{\prime}(x)>0
$$

on some interval, then f is increasing on that interval.

What f^{\prime} Says About f

Because the derivative f^{\prime} reflects in some sense the rate of change of the original function f, it's not suprising that, given information about f^{\prime} (in particular, its sign), we can infer something about whether f is increasing or decreasing at a point or on an interval.

If

$$
f^{\prime}(x)>0
$$

on some interval, then f is increasing on that interval.
If

$$
f^{\prime}(x)<0
$$

on some interval, then f is decreasing on that interval.

What f^{\prime} Says About f

Points where a function changes from increasing to decreasing or from decreasing to increasing are of special interest in many applications, especially optimization.

What f^{\prime} Says About f

Points where a function changes from increasing to decreasing or from decreasing to increasing are of special interest in many applications, especially optimization.

In the case of a point a where f changes from decreasing to increasing, the value of f for points near a is as big as $f(a)$ or larger, and f is said to have a local minimum at a.

What f^{\prime} Says About f

Points where a function changes from increasing to decreasing or from decreasing to increasing are of special interest in many applications, especially optimization.

In the case of a point a where f changes from decreasing to increasing, the value of f for points near a is as big as $f(a)$ or larger, and f is said to have a local minimum at a.

In the case of a point a where f changes from increasing to decreasing, the value of f for points near a are no larger than $f(a)$, and f is said to have a local maximum at a.

What f^{\prime} Says About f

Points where a function changes from increasing to decreasing or from decreasing to increasing are of special interest in many applications, especially optimization.

In the case of a point a where f changes from decreasing to increasing, the value of f for points near a is as big as $f(a)$ or larger, and f is said to have a local minimum at a.

In the case of a point a where f changes from increasing to decreasing, the value of f for points near a are no larger than $f(a)$, and f is said to have a local maximum at a.

Note that if f^{\prime} is continuous and it goes from positive to negative or from negative to positive on some interval, the intermediate value theorem says there has to be a point in the interval where $f^{\prime}(x)=0$. We will see that these points are the candidates for local maxima and minima.

What $f^{\prime \prime}$ Says About f

The second derivative $f^{\prime \prime}$ also provides information about f.

What $f^{\prime \prime}$ Says About f

The second derivative $f^{\prime \prime}$ also provides information about f.
If

$$
f^{\prime \prime}(x)>0
$$

on some interval, then f is concave upward on that interval.

What $f^{\prime \prime}$ Says About f

The second derivative $f^{\prime \prime}$ also provides information about f.
If

$$
f^{\prime \prime}(x)>0
$$

on some interval, then f is concave upward on that interval.
If

$$
f^{\prime \prime}(x)<0
$$

on some interval, then f is concave downward on that interval.

What $f^{\prime \prime}$ Says About f

The second derivative $f^{\prime \prime}$ also provides information about f.
If

$$
f^{\prime \prime}(x)>0
$$

on some interval, then f is concave upward on that interval.
If

$$
f^{\prime \prime}(x)<0
$$

on some interval, then f is concave downward on that interval.
One way to remember this is to consider what having $f^{\prime \prime}>0$ on an interval says about f^{\prime} on that interval - namely, that $f^{\prime}(x)$ is increasing on that interval, so the slope of the tangent line is increasing.

If you picture a graph that is concave upward, the slope of the tangent line $f^{\prime}(x)$ is increasing as x increases.

Antiderivatives

If f^{\prime} is the derivative of f, when f and f^{\prime} are considered as functions, we say that f is an antiderivative of f^{\prime}.

Antiderivatives

If f^{\prime} is the derivative of f, when f and f^{\prime} are considered as functions, we say that f is an antiderivative of f^{\prime}.

We say an antiderivative rather than the antiderivative because antiderivatives are not unique.

Antiderivatives

If f^{\prime} is the derivative of f, when f and f^{\prime} are considered as functions, we say that f is an antiderivative of f^{\prime}.

We say an antiderivative rather than the antiderivative because antiderivatives are not unique.

If c is any constant, the derivative of

$$
g(x)=f(x)+c
$$

is the same as the derivative of f, so both f and g are antiderivatives of f^{\prime}.

Antiderivatives

If f^{\prime} is the derivative of f, when f and f^{\prime} are considered as functions, we say that f is an antiderivative of f^{\prime}.

We say an antiderivative rather than the antiderivative because antiderivatives are not unique.

If c is any constant, the derivative of

$$
g(x)=f(x)+c
$$

is the same as the derivative of f, so both f and g are antiderivatives of f^{\prime}.

Usually if f is a given function, it's antiderivative is denoted by F.

