Stewart Section 2.8

Gene Quinn

The Derivative as a Function

Another way to look at the derivative is to consider it as a function in its own right, called $f^{\prime}(x)^{\prime}$, defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

whose domain is the set of points for which the limit exists.

The Derivative as a Function

Another way to look at the derivative is to consider it as a function in its own right, called $f^{\prime}(x)^{\prime}$, defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

whose domain is the set of points for which the limit exists.
Definition: A function is said to be differentiable at a if $f^{\prime}(a)$ exists.
A function is differentiable on an open interval if it is differentiable at every point in an open interval (that is, an interval of the form (a, b), $(a, \infty),(-\infty, a)$ or $-\infty, \infty)$).

Derivatives

Theorem: If a function f is differentiable at a point a, then f is continuous at a.

Derivatives

Theorem: If a function f is differentiable at a point a, then f is continuous at a.

To prove this theorem, start with a definition of $f^{\prime}(a)$:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Derivatives

Theorem: If a function f is differentiable at a point a, then f is continuous at a.

To prove this theorem, start with a definition of $f^{\prime}(a)$:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

As long as $x \neq a$, we can multiply and divide by $x-a$ to get

$$
f(x)-f(a)=\frac{f(x)-f(a)}{x-a} \cdot(x-a)
$$

Derivatives

Taking the limit of both sides gives

$$
\lim _{x \rightarrow a}[f(x)-f(a)]=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot(x-a)
$$

Derivatives

Taking the limit of both sides gives

$$
\lim _{x \rightarrow a}[f(x)-f(a)]=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot(x-a)
$$

Now applying the product rule for limits, we get

$$
\lim _{x \rightarrow a}[f(x)-f(a)]=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a)
$$

Derivatives

Taking the limit of both sides gives

$$
\lim _{x \rightarrow a}[f(x)-f(a)]=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot(x-a)
$$

Now applying the product rule for limits, we get

$$
\lim _{x \rightarrow a}[f(x)-f(a)]=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a)
$$

The limit as $x \rightarrow a$ of $x-a$ is zero, and from the definition of the derivative, we have

$$
\lim _{x \rightarrow a}[f(x)-f(a)]=f^{\prime}(a) \cdot 0=0
$$

Derivatives

Now to complete the proof, note that

$$
f(x)=f(a)-[f(x)-f(a)]
$$

SO

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\{f(a)-[f(x)-f(a)]\}
$$

Derivatives

Now to complete the proof, note that

$$
f(x)=f(a)-[f(x)-f(a)]
$$

so

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\{f(a)-[f(x)-f(a)]\}
$$

Now apply the sum rule for limits to get

$$
\left.\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} f(a)-\lim _{x \rightarrow a}[f(x)-f(a)]\right\}=f(a)-0=f(a)
$$

/box

Derivatives

There are essentially three ways a function can fail to be differentiable at a point.

First, the graph of the function can have a sharp corner or kink at $x=a$. In this case, generally the derivative fails to exist because left and right hand limits

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a} \text { and } \lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}
$$

are not equal.

Derivatives

There are essentially three ways a function can fail to be differentiable at a point.

First, the graph of the function can have a sharp corner or kink at $x=a$. In this case, generally the derivative fails to exist because left and right hand limits

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a} \text { and } \lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}
$$

are not equal.
A simple example of this is the function

$$
f(x)=|x|
$$

at $a=0$.

Derivatives

A second way that a function can fail to be differentiable at a point a is for the function to have a jump or discontinuity at $x=a$.

Derivatives

A second way that a function can fail to be differentiable at a point a is for the function to have a jump or discontinuity at $x=a$.

We proved earlier that if f is differentiable at $x=a$, then f is continuous at $x=a$.

The contrapositive of the statement of this theorem is the statement that f is not differentiable at $x=a$ if f is not continuous.

Recall that an if-then statement and its contrapositive are logically equivalent, that is, they always have the same truth value.

Derivatives

The third way that a function can fail to be differentiable at a point a is for the function to have a vertical tangent line (i.e., a vertical asymptote) at $x=a$.

Derivatives

The third way that a function can fail to be differentiable at a point a is for the function to have a vertical tangent line (i.e., a vertical asymptote) at $x=a$.

The function

$$
f(x)=\frac{1}{x}
$$

is not differentiable at $a=0$ for this reason.

Derivatives

Having defined the derivative as a function $f^{\prime}(x)$, there is no reason why we cannot continue to define the derivative of the function $f^{\prime}(x)$ to obtain the second derivative of f denoted by $f^{\prime \prime}(x)$ and defined by

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}
$$

provided the limit exists.

Derivatives

Having defined the derivative as a function $f^{\prime}(x)$, there is no reason why we cannot continue to define the derivative of the function $f^{\prime}(x)$ to obtain the second derivative of f denoted by $f^{\prime \prime}(x)$ and defined by

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}
$$

provided the limit exists.

In fact, we can continue to define third, fourth, fifth, etc. derivatives of f in the same manner.

Notation

All of the following are common and equivalent notations for the derivative:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The symbols D and $d / d x$ are called differentiation operators.

Notation

All of the following are common and equivalent notations for the derivative:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The symbols D and $d / d x$ are called differentiation operators.
Notations for the second derivative are

$$
f^{\prime \prime}(y)=y^{\prime \prime}=\frac{d^{2} x}{d x^{2}}=\frac{d^{2} f}{d x^{2}}=\frac{d^{2}}{d x^{2}} f(x)
$$

Notation

All of the following are common and equivalent notations for the derivative:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The symbols D and $d / d x$ are called differentiation operators.
Notations for the second derivative are

$$
f^{\prime \prime}(y)=y^{\prime \prime}=\frac{d^{2} x}{d x^{2}}=\frac{d^{2} f}{d x^{2}}=\frac{d^{2}}{d x^{2}} f(x)
$$

Notations for the third derivative are

$$
f^{\prime \prime \prime}(y)=y^{\prime \prime \prime}=\frac{d^{3} x}{d x^{3}}=\frac{d^{3} f}{d x^{3}}=\frac{d^{3}}{d x^{3}} f(x)
$$

