Stewart Section 2.7

Gene Quinn

Derivatives

Definition: The tangent line to the curve $y=f(x)$ at the point $P=(a, f(a))$ is the line through P having slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided the limit exists.

Derivatives

Definition: The tangent line to the curve $y=f(x)$ at the point $P=(a, f(a))$ is the line through P having slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided the limit exists.
The slope of the tangent line can also be expressed as

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Derivatives

Definition: The derivative of a finction f at a number a is denoted by $f^{\prime}(a)$ and given by the limit

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided the limit exists.

Derivatives

Definition: The derivative of a finction f at a number a is denoted by $f^{\prime}(a)$ and given by the limit

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided the limit exists.
An equivalent way of stating the definition is

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Interpretation: Derivative as the Slope of a Tangent

Definition: The tangent line to

$$
y=f(x)
$$

at the point $(a, f(a))$ is the line passing through $(a, f(a))$ whose slope is equal to $f^{\prime}(a)$, the derivative of f at a.

Interpretation: Derivative as a Rate of Change

Definition: The derivative of f at $a, f^{\prime}(a)$, is the instantaneous rate of change of $y=f(x)$ with respect to x when $x=a$.

