Stewart Section 2.6

Gene Quinn

## Tangents, Velocities, and Rates of Change

Definition: The tangent line to the curve $y=f(x)$ at the point $P=(a, f(a))$ is the line through $P$ having slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided the limit exists.

## Tangents, Velocities, and Rates of Change

Definition: The tangent line to the curve $y=f(x)$ at the point $P=(a, f(a))$ is the line through $P$ having slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided the limit exists.
The slope of the tangent line can also be expressed as

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

## Tangents, Velocities, and Rates of Change

Definition: The tangent line concept can be used to represent velocity. Suppose the average velocity as the object moves from $a+h$ to $h$ is given by

$$
\text { average velocity }=\frac{\text { displacement }}{\text { time }}=\frac{f(a+h)-f(a)}{h}
$$

## Tangents, Velocities, and Rates of Change

Definition: The tangent line concept can be used to represent velocity. Suppose the average velocity as the object moves from $a+h$ to $h$ is given by

$$
\text { average velocity }=\frac{\text { displacement }}{\text { time }}=\frac{f(a+h)-f(a)}{h}
$$

We may define the velocity or instantaneous velocity $v(a)$ at time $t=a$ by the limit of this average velocity:

$$
v(a)=\lim _{h \rightarrow a} \frac{f(a+h)-f(a)}{h}
$$

## Tangents, Velocities, and Rates of Change

Definition: If $y=f(x)$, the increment of $x$ is

$$
\Delta x=x_{2}-x_{1}
$$

## Tangents, Velocities, and Rates of Change

Definition: If $y=f(x)$, the increment of $x$ is

$$
\Delta x=x_{2}-x_{1}
$$

The corresponding change in $y$ is

$$
\Delta y=f\left(x_{2}\right)-f\left(x_{1}\right)
$$

## Tangents, Velocities, and Rates of Change

Definition: If $y=f(x)$, the increment of $x$ is

$$
\Delta x=x_{2}-x_{1}
$$

The corresponding change in $y$ is

$$
\Delta y=f\left(x_{2}\right)-f\left(x_{1}\right)
$$

The average rate of change of $y$ with respect to $x$ over the interval $\left[x_{1}, x_{2}\right]$.

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

## Tangents, Velocities, and Rates of Change

The (instantaneous) rate of change of $y$ with respect to $x$ at $x=x_{1}$ is defined by the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

